Abstract

Pulsed photoexcitation of hydrocarbon fuels doped with organic molecules exhibits a temperature-dependent fluorescence spectrum that is used as the basis for a weakly intrusive optical thermometer. By use of pulsed excitation from a 308-nm 8-ns XeCl excimer laser with gated detection of the fluorescence emissions from doped n-heptane, we demonstrate that time-resolved measurement of the excited monomer and the redshifted excited-state complex (exciplex) fluorescence emissions can yield sub-1° accuracy for temperatures ranging from 440  K to the vicinity of the critical temperature (540  K). The experiments also show that the exciplex fluorescence spectrum is pressure independent below and above supercritical pressure.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. K. Law, Prog. Energy Combust. Sci. 8, 171 (1982).
    [CrossRef]
  2. G. M. Faeth, Prog. Energy Combust. Sci. 9, 1 (1983).
    [CrossRef]
  3. W. A. Sirignano, Prog. Energy Combust. Sci. 9, 291 (1983).
    [CrossRef]
  4. A. M. Murray and L. A. Melton, Appl. Opt. 24, 2783 (1985).
    [CrossRef] [PubMed]
  5. H. E. Gossage and L. A. Melton, Appl. Opt. 26, 2256 (1987).
    [CrossRef] [PubMed]
  6. J. H. Stufflebeam, Appl. Spectrosc. 43, 274 (1989).
    [CrossRef]
  7. S. H. Hale and L. A. Melton, Appl. Spectrosc. 44, 101 (1990).
    [CrossRef]
  8. M. R. Wells and L. A. Melton, J. Heat Transfer 112, 1008 (1990).
    [CrossRef]
  9. T. R. Hanlon and L. A. Melton, J. Heat Transfer 114, 450 (1992).
    [CrossRef]

1992 (1)

T. R. Hanlon and L. A. Melton, J. Heat Transfer 114, 450 (1992).
[CrossRef]

1990 (2)

S. H. Hale and L. A. Melton, Appl. Spectrosc. 44, 101 (1990).
[CrossRef]

M. R. Wells and L. A. Melton, J. Heat Transfer 112, 1008 (1990).
[CrossRef]

1989 (1)

1987 (1)

1985 (1)

1983 (2)

G. M. Faeth, Prog. Energy Combust. Sci. 9, 1 (1983).
[CrossRef]

W. A. Sirignano, Prog. Energy Combust. Sci. 9, 291 (1983).
[CrossRef]

1982 (1)

C. K. Law, Prog. Energy Combust. Sci. 8, 171 (1982).
[CrossRef]

Faeth, G. M.

G. M. Faeth, Prog. Energy Combust. Sci. 9, 1 (1983).
[CrossRef]

Gossage, H. E.

Hale, S. H.

Hanlon, T. R.

T. R. Hanlon and L. A. Melton, J. Heat Transfer 114, 450 (1992).
[CrossRef]

Law, C. K.

C. K. Law, Prog. Energy Combust. Sci. 8, 171 (1982).
[CrossRef]

Melton, L. A.

Murray, A. M.

Sirignano, W. A.

W. A. Sirignano, Prog. Energy Combust. Sci. 9, 291 (1983).
[CrossRef]

Stufflebeam, J. H.

Wells, M. R.

M. R. Wells and L. A. Melton, J. Heat Transfer 112, 1008 (1990).
[CrossRef]

Appl. Opt. (2)

Appl. Spectrosc. (2)

J. Heat Transfer (2)

M. R. Wells and L. A. Melton, J. Heat Transfer 112, 1008 (1990).
[CrossRef]

T. R. Hanlon and L. A. Melton, J. Heat Transfer 114, 450 (1992).
[CrossRef]

Prog. Energy Combust. Sci. (3)

C. K. Law, Prog. Energy Combust. Sci. 8, 171 (1982).
[CrossRef]

G. M. Faeth, Prog. Energy Combust. Sci. 9, 1 (1983).
[CrossRef]

W. A. Sirignano, Prog. Energy Combust. Sci. 9, 291 (1983).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for time-resolved exciplex thermometer measurements. OMA, optical multichannel analyzer.

Fig. 2
Fig. 2

Detail of the sample cell and controls. PID, proportional integral derivative.

Fig. 3
Fig. 3

Normalized time-resolved fluorescence spectra obtained by use of a 6-ns gate with a 16-ns time delay (50-event averages).

Fig. 4
Fig. 4

Linear fit for the exciplex-to-monomer fluorescence signal ratio, obtained with 10-nm bands centered at wavelengths of 500 and 400  nm. (a) Slope, -0.0268±0.0005°C-1; (b) slope, -0.0258±0.0006°C-1.

Metrics