Abstract

The microtag concept is an anticounterfeiting and security measure. Microtags are computer-generated holograms (CGH’s) consisting of 150-nm lines arranged to form 300-nm-period gratings. The microtags that we describe were designed for readout at 442 nm. The smallest microtag measures 56 µm×80 µm when viewed at normal incidence. The CGH design process uses a modified iterative Fourier-transform algorithm to create either phase-only or phase-and-amplitude microtags. We also report on a simple and compact readout system for recording the diffraction pattern formed by a microtag. The measured diffraction patterns agree very well with predictions.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. C. Sweatt, M. R. Descour, A. K. Ray-Chaudhuri, S. H. Kravitz, M. E. Warren, R. H. Stulen, D. A. Tichenor, J. H. Underwood, and K. D. Krenz, Proc. SPIE 2689, 170 (1996).
    [CrossRef]
  2. The National Technology Roadmap for Semiconductors (Semiconductor Industry Association, San Jose, Calif., 1994), p. 11.
  3. D. A. Tichenor, in Extreme Ultraviolet Lithography, F. Zernike and D. T. Atwood, eds., Vol. 23 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), p. 89.
  4. M. R. Descour, W. C. Sweatt, A. K. Ray-Chaudhuri, K. D. Krenz, M. E. Warren, S. H. Kravitz, D. A. Tichenor, R. H. Stulen, and T. L. Love, Opt. Lett. 21, 1951 (1996).
    [CrossRef] [PubMed]
  5. R. W. Gerchberg and W. O. Saxton, Optik 35, 237 (1972).
  6. M. R. Descour, W. C. Sweatt, and K. D. Krenz, “Mass-producible microtags for security applications:?calculated fabrication tolerances by rigorous coupled-wave analysis,” Opt. Eng. (to be published).
  7. P. F. Keller and A. F. Gmitro, Appl. Opt. 31, 5517 (1992).
    [CrossRef] [PubMed]

1996

W. C. Sweatt, M. R. Descour, A. K. Ray-Chaudhuri, S. H. Kravitz, M. E. Warren, R. H. Stulen, D. A. Tichenor, J. H. Underwood, and K. D. Krenz, Proc. SPIE 2689, 170 (1996).
[CrossRef]

M. R. Descour, W. C. Sweatt, A. K. Ray-Chaudhuri, K. D. Krenz, M. E. Warren, S. H. Kravitz, D. A. Tichenor, R. H. Stulen, and T. L. Love, Opt. Lett. 21, 1951 (1996).
[CrossRef] [PubMed]

1992

1972

R. W. Gerchberg and W. O. Saxton, Optik 35, 237 (1972).

Descour, M. R.

W. C. Sweatt, M. R. Descour, A. K. Ray-Chaudhuri, S. H. Kravitz, M. E. Warren, R. H. Stulen, D. A. Tichenor, J. H. Underwood, and K. D. Krenz, Proc. SPIE 2689, 170 (1996).
[CrossRef]

M. R. Descour, W. C. Sweatt, A. K. Ray-Chaudhuri, K. D. Krenz, M. E. Warren, S. H. Kravitz, D. A. Tichenor, R. H. Stulen, and T. L. Love, Opt. Lett. 21, 1951 (1996).
[CrossRef] [PubMed]

M. R. Descour, W. C. Sweatt, and K. D. Krenz, “Mass-producible microtags for security applications:?calculated fabrication tolerances by rigorous coupled-wave analysis,” Opt. Eng. (to be published).

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, Optik 35, 237 (1972).

Gmitro, A. F.

Keller, P. F.

Kravitz, S. H.

M. R. Descour, W. C. Sweatt, A. K. Ray-Chaudhuri, K. D. Krenz, M. E. Warren, S. H. Kravitz, D. A. Tichenor, R. H. Stulen, and T. L. Love, Opt. Lett. 21, 1951 (1996).
[CrossRef] [PubMed]

W. C. Sweatt, M. R. Descour, A. K. Ray-Chaudhuri, S. H. Kravitz, M. E. Warren, R. H. Stulen, D. A. Tichenor, J. H. Underwood, and K. D. Krenz, Proc. SPIE 2689, 170 (1996).
[CrossRef]

Krenz, K. D.

W. C. Sweatt, M. R. Descour, A. K. Ray-Chaudhuri, S. H. Kravitz, M. E. Warren, R. H. Stulen, D. A. Tichenor, J. H. Underwood, and K. D. Krenz, Proc. SPIE 2689, 170 (1996).
[CrossRef]

M. R. Descour, W. C. Sweatt, A. K. Ray-Chaudhuri, K. D. Krenz, M. E. Warren, S. H. Kravitz, D. A. Tichenor, R. H. Stulen, and T. L. Love, Opt. Lett. 21, 1951 (1996).
[CrossRef] [PubMed]

M. R. Descour, W. C. Sweatt, and K. D. Krenz, “Mass-producible microtags for security applications:?calculated fabrication tolerances by rigorous coupled-wave analysis,” Opt. Eng. (to be published).

Love, T. L.

Ray-Chaudhuri, A. K.

M. R. Descour, W. C. Sweatt, A. K. Ray-Chaudhuri, K. D. Krenz, M. E. Warren, S. H. Kravitz, D. A. Tichenor, R. H. Stulen, and T. L. Love, Opt. Lett. 21, 1951 (1996).
[CrossRef] [PubMed]

W. C. Sweatt, M. R. Descour, A. K. Ray-Chaudhuri, S. H. Kravitz, M. E. Warren, R. H. Stulen, D. A. Tichenor, J. H. Underwood, and K. D. Krenz, Proc. SPIE 2689, 170 (1996).
[CrossRef]

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, Optik 35, 237 (1972).

Stulen, R. H.

M. R. Descour, W. C. Sweatt, A. K. Ray-Chaudhuri, K. D. Krenz, M. E. Warren, S. H. Kravitz, D. A. Tichenor, R. H. Stulen, and T. L. Love, Opt. Lett. 21, 1951 (1996).
[CrossRef] [PubMed]

W. C. Sweatt, M. R. Descour, A. K. Ray-Chaudhuri, S. H. Kravitz, M. E. Warren, R. H. Stulen, D. A. Tichenor, J. H. Underwood, and K. D. Krenz, Proc. SPIE 2689, 170 (1996).
[CrossRef]

Sweatt, W. C.

W. C. Sweatt, M. R. Descour, A. K. Ray-Chaudhuri, S. H. Kravitz, M. E. Warren, R. H. Stulen, D. A. Tichenor, J. H. Underwood, and K. D. Krenz, Proc. SPIE 2689, 170 (1996).
[CrossRef]

M. R. Descour, W. C. Sweatt, A. K. Ray-Chaudhuri, K. D. Krenz, M. E. Warren, S. H. Kravitz, D. A. Tichenor, R. H. Stulen, and T. L. Love, Opt. Lett. 21, 1951 (1996).
[CrossRef] [PubMed]

M. R. Descour, W. C. Sweatt, and K. D. Krenz, “Mass-producible microtags for security applications:?calculated fabrication tolerances by rigorous coupled-wave analysis,” Opt. Eng. (to be published).

Tichenor, D. A.

M. R. Descour, W. C. Sweatt, A. K. Ray-Chaudhuri, K. D. Krenz, M. E. Warren, S. H. Kravitz, D. A. Tichenor, R. H. Stulen, and T. L. Love, Opt. Lett. 21, 1951 (1996).
[CrossRef] [PubMed]

W. C. Sweatt, M. R. Descour, A. K. Ray-Chaudhuri, S. H. Kravitz, M. E. Warren, R. H. Stulen, D. A. Tichenor, J. H. Underwood, and K. D. Krenz, Proc. SPIE 2689, 170 (1996).
[CrossRef]

D. A. Tichenor, in Extreme Ultraviolet Lithography, F. Zernike and D. T. Atwood, eds., Vol. 23 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), p. 89.

Underwood, J. H.

W. C. Sweatt, M. R. Descour, A. K. Ray-Chaudhuri, S. H. Kravitz, M. E. Warren, R. H. Stulen, D. A. Tichenor, J. H. Underwood, and K. D. Krenz, Proc. SPIE 2689, 170 (1996).
[CrossRef]

Warren, M. E.

W. C. Sweatt, M. R. Descour, A. K. Ray-Chaudhuri, S. H. Kravitz, M. E. Warren, R. H. Stulen, D. A. Tichenor, J. H. Underwood, and K. D. Krenz, Proc. SPIE 2689, 170 (1996).
[CrossRef]

M. R. Descour, W. C. Sweatt, A. K. Ray-Chaudhuri, K. D. Krenz, M. E. Warren, S. H. Kravitz, D. A. Tichenor, R. H. Stulen, and T. L. Love, Opt. Lett. 21, 1951 (1996).
[CrossRef] [PubMed]

Appl. Opt.

Opt. Lett.

Optik

R. W. Gerchberg and W. O. Saxton, Optik 35, 237 (1972).

Proc. SPIE

W. C. Sweatt, M. R. Descour, A. K. Ray-Chaudhuri, S. H. Kravitz, M. E. Warren, R. H. Stulen, D. A. Tichenor, J. H. Underwood, and K. D. Krenz, Proc. SPIE 2689, 170 (1996).
[CrossRef]

Other

The National Technology Roadmap for Semiconductors (Semiconductor Industry Association, San Jose, Calif., 1994), p. 11.

D. A. Tichenor, in Extreme Ultraviolet Lithography, F. Zernike and D. T. Atwood, eds., Vol. 23 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), p. 89.

M. R. Descour, W. C. Sweatt, and K. D. Krenz, “Mass-producible microtags for security applications:?calculated fabrication tolerances by rigorous coupled-wave analysis,” Opt. Eng. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the microtag readout system and phase-and-amplitude encoding.

Fig. 2
Fig. 2

Negative-contrast images of (a) the 12×12 cell predicted phase-only diffraction pattern if only the GS algorithm is used (25 iterations) and (b) the predicted 8×8 cell phase-and-amplitude diffraction pattern after 25 iterations of the GS algorithm.

Fig. 3
Fig. 3

Negative-contrast images of (a) the predicted diffraction pattern for a 12×12 cell phase-only microtag and (b) the actual diffraction pattern from the 12×12 cell phase-only microtag.

Fig. 4
Fig. 4

Negative-contrast images of (a) the predicted diffraction pattern for an 8×8 cell phase-and-amplitude microtag and (b) the actual diffraction pattern from the 8×8 cell phase-and-amplitude microtag.

Metrics