Abstract

We show theoretically and demonstrate experimentally that highly absorbing particles can be trapped and manipulated in a single highly focused Gaussian beam. Our studies of the effects of polarized light on such particles show that they can be set into rotation by elliptically polarized light and that both the sense and the speed of their rotation can be smoothly controlled.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, Sci. Am. 226, 62 (1972).
    [CrossRef]
  2. G. Roosen and C. Imbert, Opt. Commun. 26, 432 (1978).
    [CrossRef]
  3. K. T. Gahagan and G. A. Swartzlander, Opt. Lett. 21, 827 (1996).
    [CrossRef] [PubMed]
  4. K. Svoboda and S. M. Block, Opt. Lett. 19, 930 (1994).
    [CrossRef] [PubMed]
  5. S. Sato, Y. Harada, and Y. Waseda, Opt. Lett. 19, 1807 (1994).
    [CrossRef]
  6. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. Lett. 75, 826 (1995).
    [CrossRef] [PubMed]
  7. M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, Phys. Rev. A 54, 1593 (1996).
    [CrossRef] [PubMed]
  8. N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, Opt. Lett. 22, 52 (1997).
    [CrossRef] [PubMed]
  9. A. Sadowsky, Acta Comment. Imp. Universit. Jurievensis 7, 1 (1899); Acta Comment. Imp. Universit. Jurievensis 8, 1 (1900).
  10. R. A. Beth, Phys. Rev. 50, 115 (1936).
    [CrossRef]
  11. T. Sugiura, S. Kawata, and S. Minami, J. Spectrosc. Soc. Jpn. 11, 1342 (1990).
  12. P. L. Marston and J. H. Crichton, Phys. Rev. A 30, 2508 (1984).
    [CrossRef]
  13. S. Chang and S. S. Lee, J. Opt. Soc. Am. B 2, 1853 (1985).
    [CrossRef]
  14. J. P. Barton, D. R. Alexander, and S. A. Schaub, J. Appl. Phys. 66, 4592 (1989).
  15. N. Özer and F. Tepehan, Solar Energy Mater.??Solar Cells 30, 13 (1993).
    [CrossRef]
  16. S. M. Barnett and L. Allen, Opt. Commun. 110, 670 (1994).
    [CrossRef]

1997 (1)

1996 (2)

K. T. Gahagan and G. A. Swartzlander, Opt. Lett. 21, 827 (1996).
[CrossRef] [PubMed]

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, Phys. Rev. A 54, 1593 (1996).
[CrossRef] [PubMed]

1995 (1)

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. Lett. 75, 826 (1995).
[CrossRef] [PubMed]

1994 (3)

1993 (1)

N. Özer and F. Tepehan, Solar Energy Mater.??Solar Cells 30, 13 (1993).
[CrossRef]

1990 (1)

T. Sugiura, S. Kawata, and S. Minami, J. Spectrosc. Soc. Jpn. 11, 1342 (1990).

1989 (1)

J. P. Barton, D. R. Alexander, and S. A. Schaub, J. Appl. Phys. 66, 4592 (1989).

1985 (1)

1984 (1)

P. L. Marston and J. H. Crichton, Phys. Rev. A 30, 2508 (1984).
[CrossRef]

1978 (1)

G. Roosen and C. Imbert, Opt. Commun. 26, 432 (1978).
[CrossRef]

1972 (1)

A. Ashkin, Sci. Am. 226, 62 (1972).
[CrossRef]

1936 (1)

R. A. Beth, Phys. Rev. 50, 115 (1936).
[CrossRef]

1899 (1)

A. Sadowsky, Acta Comment. Imp. Universit. Jurievensis 7, 1 (1899); Acta Comment. Imp. Universit. Jurievensis 8, 1 (1900).

Alexander, D. R.

J. P. Barton, D. R. Alexander, and S. A. Schaub, J. Appl. Phys. 66, 4592 (1989).

Allen, L.

Ashkin, A.

A. Ashkin, Sci. Am. 226, 62 (1972).
[CrossRef]

Barnett, S. M.

S. M. Barnett and L. Allen, Opt. Commun. 110, 670 (1994).
[CrossRef]

Barton, J. P.

J. P. Barton, D. R. Alexander, and S. A. Schaub, J. Appl. Phys. 66, 4592 (1989).

Beth, R. A.

R. A. Beth, Phys. Rev. 50, 115 (1936).
[CrossRef]

Block, S. M.

Chang, S.

Crichton, J. H.

P. L. Marston and J. H. Crichton, Phys. Rev. A 30, 2508 (1984).
[CrossRef]

Dholakia, K.

Enger, J.

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, Phys. Rev. A 54, 1593 (1996).
[CrossRef] [PubMed]

Friese, M. E. J.

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, Phys. Rev. A 54, 1593 (1996).
[CrossRef] [PubMed]

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. Lett. 75, 826 (1995).
[CrossRef] [PubMed]

Gahagan, K. T.

Harada, Y.

He, H.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. Lett. 75, 826 (1995).
[CrossRef] [PubMed]

Heckenberg, N. R.

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, Phys. Rev. A 54, 1593 (1996).
[CrossRef] [PubMed]

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. Lett. 75, 826 (1995).
[CrossRef] [PubMed]

Imbert, C.

G. Roosen and C. Imbert, Opt. Commun. 26, 432 (1978).
[CrossRef]

Kawata, S.

T. Sugiura, S. Kawata, and S. Minami, J. Spectrosc. Soc. Jpn. 11, 1342 (1990).

Lee, S. S.

Marston, P. L.

P. L. Marston and J. H. Crichton, Phys. Rev. A 30, 2508 (1984).
[CrossRef]

Minami, S.

T. Sugiura, S. Kawata, and S. Minami, J. Spectrosc. Soc. Jpn. 11, 1342 (1990).

Özer, N.

N. Özer and F. Tepehan, Solar Energy Mater.??Solar Cells 30, 13 (1993).
[CrossRef]

Padgett, M. J.

Roosen, G.

G. Roosen and C. Imbert, Opt. Commun. 26, 432 (1978).
[CrossRef]

Rubinsztein-Dunlop, H.

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, Phys. Rev. A 54, 1593 (1996).
[CrossRef] [PubMed]

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. Lett. 75, 826 (1995).
[CrossRef] [PubMed]

Sadowsky, A.

A. Sadowsky, Acta Comment. Imp. Universit. Jurievensis 7, 1 (1899); Acta Comment. Imp. Universit. Jurievensis 8, 1 (1900).

Sato, S.

Schaub, S. A.

J. P. Barton, D. R. Alexander, and S. A. Schaub, J. Appl. Phys. 66, 4592 (1989).

Simpson, N. B.

Sugiura, T.

T. Sugiura, S. Kawata, and S. Minami, J. Spectrosc. Soc. Jpn. 11, 1342 (1990).

Svoboda, K.

Swartzlander, G. A.

Tepehan, F.

N. Özer and F. Tepehan, Solar Energy Mater.??Solar Cells 30, 13 (1993).
[CrossRef]

Waseda, Y.

Acta Comment. Imp. Universit. Jurievensis (1)

A. Sadowsky, Acta Comment. Imp. Universit. Jurievensis 7, 1 (1899); Acta Comment. Imp. Universit. Jurievensis 8, 1 (1900).

J. Appl. Phys. (1)

J. P. Barton, D. R. Alexander, and S. A. Schaub, J. Appl. Phys. 66, 4592 (1989).

J. Opt. Soc. Am. B (1)

J. Spectrosc. Soc. Jpn. (1)

T. Sugiura, S. Kawata, and S. Minami, J. Spectrosc. Soc. Jpn. 11, 1342 (1990).

Opt. Commun. (2)

G. Roosen and C. Imbert, Opt. Commun. 26, 432 (1978).
[CrossRef]

S. M. Barnett and L. Allen, Opt. Commun. 110, 670 (1994).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. (1)

R. A. Beth, Phys. Rev. 50, 115 (1936).
[CrossRef]

Phys. Rev. A (2)

P. L. Marston and J. H. Crichton, Phys. Rev. A 30, 2508 (1984).
[CrossRef]

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, Phys. Rev. A 54, 1593 (1996).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. Lett. 75, 826 (1995).
[CrossRef] [PubMed]

Sci. Am. (1)

A. Ashkin, Sci. Am. 226, 62 (1972).
[CrossRef]

Solar Energy Mater.??Solar Cells (1)

N. Özer and F. Tepehan, Solar Energy Mater.??Solar Cells 30, 13 (1993).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Linear momentum in a focussed Gaussian laser beam. The direction and magnitude of the Poynting vector above and below the beam waist are shown. As the beam is converging, the Poynting vector has an inward radial component at all points away from the beam axis, which permits two-dimensional radial trapping of absorbing particles.

Fig. 2
Fig. 2

Experimental setup for optical trapping and micromanipulation of absorbing particles by use of a Gaussian laser beam. The particles are trapped above the waist of the beam. The quality of the beam is ensured to be Gaussian by optical filtering with a single-mode optical fiber.

Fig. 3
Fig. 3

Particle rotation as a result of the torque from elliptically polarized light. The rotation frequency for absorbing particles trapped in a Gaussian beam is shown as a function of θ, the angle that the plane of polarization of the incoming laser beam makes with the fast axis of the λ/4 plate. The solid curve represents the expected variation of rotation rate with θ as calculated from Eq.  (1).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

J=-2ωE02 sin 2θiˆ,

Metrics