Abstract

We describe an optical parametric oscillator that is pumped by population-trapped atoms that are prepared with maximum coherence. The oscillator is based on the use of an effective nonlinear susceptibility that is of the same order as the linear susceptibility. Because the parametric gain is obtained in a single coherence length, the gain bandwidth can exceed the degenerate frequency. In Pb vapor the calculated gain is maximized at 1.88 µm and has a bandwidth of 7500 cm-1.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, Phys. Rev. Lett. 77, 4326 (1996).
    [CrossRef] [PubMed]
  2. P. R. Hemmer, D. P. Katz, J. Donoghue, M. Cronin-Golomb, M. S. Shahriar, and P. Kumar, Opt. Lett. 20, 982 (1995).
    [CrossRef]
  3. S. E. Harris, J. E. Field, and A. Imamoglu, Phys. Rev. Lett. 64, 1107 (1990).
    [CrossRef] [PubMed]
  4. K. Hakuta, L. Marmet, and B. P. Stoicheff, Phys. Rev. A 45, 5152 (1992).
    [CrossRef] [PubMed]
  5. S. P. Tewari and G. S. Agarwal, Phys. Rev. Lett. 56, 1811 (1986).
    [CrossRef] [PubMed]
  6. J. Oreg, F. T. Hioe, and J. H. Eberly, Phys. Rev. A 29, 690 (1984).
    [CrossRef]
  7. U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Külz, and K. Bergmann, Chem. Phys. Lett. 149, 463 (1988).
    [CrossRef]
  8. M. Jain, A. J. Merriam, A. Kasapi, G. Y. Yin, and S. E. Harris, Phys. Rev. Lett. 75, 4385 (1995).
    [CrossRef] [PubMed]
  9. S. E. Harris and Z.-F. Luo, Phys. Rev. A 52, R928 (1995).
    [CrossRef]

1996 (1)

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, Phys. Rev. Lett. 77, 4326 (1996).
[CrossRef] [PubMed]

1995 (3)

P. R. Hemmer, D. P. Katz, J. Donoghue, M. Cronin-Golomb, M. S. Shahriar, and P. Kumar, Opt. Lett. 20, 982 (1995).
[CrossRef]

M. Jain, A. J. Merriam, A. Kasapi, G. Y. Yin, and S. E. Harris, Phys. Rev. Lett. 75, 4385 (1995).
[CrossRef] [PubMed]

S. E. Harris and Z.-F. Luo, Phys. Rev. A 52, R928 (1995).
[CrossRef]

1992 (1)

K. Hakuta, L. Marmet, and B. P. Stoicheff, Phys. Rev. A 45, 5152 (1992).
[CrossRef] [PubMed]

1990 (1)

S. E. Harris, J. E. Field, and A. Imamoglu, Phys. Rev. Lett. 64, 1107 (1990).
[CrossRef] [PubMed]

1988 (1)

U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Külz, and K. Bergmann, Chem. Phys. Lett. 149, 463 (1988).
[CrossRef]

1986 (1)

S. P. Tewari and G. S. Agarwal, Phys. Rev. Lett. 56, 1811 (1986).
[CrossRef] [PubMed]

1984 (1)

J. Oreg, F. T. Hioe, and J. H. Eberly, Phys. Rev. A 29, 690 (1984).
[CrossRef]

Agarwal, G. S.

S. P. Tewari and G. S. Agarwal, Phys. Rev. Lett. 56, 1811 (1986).
[CrossRef] [PubMed]

Becker, M.

U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Külz, and K. Bergmann, Chem. Phys. Lett. 149, 463 (1988).
[CrossRef]

Bergmann, K.

U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Külz, and K. Bergmann, Chem. Phys. Lett. 149, 463 (1988).
[CrossRef]

Cronin-Golomb, M.

Donoghue, J.

Eberly, J. H.

J. Oreg, F. T. Hioe, and J. H. Eberly, Phys. Rev. A 29, 690 (1984).
[CrossRef]

Field, J. E.

S. E. Harris, J. E. Field, and A. Imamoglu, Phys. Rev. Lett. 64, 1107 (1990).
[CrossRef] [PubMed]

Gaubatz, U.

U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Külz, and K. Bergmann, Chem. Phys. Lett. 149, 463 (1988).
[CrossRef]

Hakuta, K.

K. Hakuta, L. Marmet, and B. P. Stoicheff, Phys. Rev. A 45, 5152 (1992).
[CrossRef] [PubMed]

Harris, S. E.

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, Phys. Rev. Lett. 77, 4326 (1996).
[CrossRef] [PubMed]

M. Jain, A. J. Merriam, A. Kasapi, G. Y. Yin, and S. E. Harris, Phys. Rev. Lett. 75, 4385 (1995).
[CrossRef] [PubMed]

S. E. Harris and Z.-F. Luo, Phys. Rev. A 52, R928 (1995).
[CrossRef]

S. E. Harris, J. E. Field, and A. Imamoglu, Phys. Rev. Lett. 64, 1107 (1990).
[CrossRef] [PubMed]

Hemmer, P. R.

Hioe, F. T.

J. Oreg, F. T. Hioe, and J. H. Eberly, Phys. Rev. A 29, 690 (1984).
[CrossRef]

Imamoglu, A.

S. E. Harris, J. E. Field, and A. Imamoglu, Phys. Rev. Lett. 64, 1107 (1990).
[CrossRef] [PubMed]

Jain, M.

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, Phys. Rev. Lett. 77, 4326 (1996).
[CrossRef] [PubMed]

M. Jain, A. J. Merriam, A. Kasapi, G. Y. Yin, and S. E. Harris, Phys. Rev. Lett. 75, 4385 (1995).
[CrossRef] [PubMed]

Kasapi, A.

M. Jain, A. J. Merriam, A. Kasapi, G. Y. Yin, and S. E. Harris, Phys. Rev. Lett. 75, 4385 (1995).
[CrossRef] [PubMed]

Katz, D. P.

Külz, M.

U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Külz, and K. Bergmann, Chem. Phys. Lett. 149, 463 (1988).
[CrossRef]

Kumar, P.

Luo, Z.-F.

S. E. Harris and Z.-F. Luo, Phys. Rev. A 52, R928 (1995).
[CrossRef]

Marmet, L.

K. Hakuta, L. Marmet, and B. P. Stoicheff, Phys. Rev. A 45, 5152 (1992).
[CrossRef] [PubMed]

Merriam, A. J.

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, Phys. Rev. Lett. 77, 4326 (1996).
[CrossRef] [PubMed]

M. Jain, A. J. Merriam, A. Kasapi, G. Y. Yin, and S. E. Harris, Phys. Rev. Lett. 75, 4385 (1995).
[CrossRef] [PubMed]

Oreg, J.

J. Oreg, F. T. Hioe, and J. H. Eberly, Phys. Rev. A 29, 690 (1984).
[CrossRef]

Rudecki, P.

U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Külz, and K. Bergmann, Chem. Phys. Lett. 149, 463 (1988).
[CrossRef]

Schiemann, S.

U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Külz, and K. Bergmann, Chem. Phys. Lett. 149, 463 (1988).
[CrossRef]

Shahriar, M. S.

Stoicheff, B. P.

K. Hakuta, L. Marmet, and B. P. Stoicheff, Phys. Rev. A 45, 5152 (1992).
[CrossRef] [PubMed]

Tewari, S. P.

S. P. Tewari and G. S. Agarwal, Phys. Rev. Lett. 56, 1811 (1986).
[CrossRef] [PubMed]

Xia, H.

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, Phys. Rev. Lett. 77, 4326 (1996).
[CrossRef] [PubMed]

Yin, G. Y.

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, Phys. Rev. Lett. 77, 4326 (1996).
[CrossRef] [PubMed]

M. Jain, A. J. Merriam, A. Kasapi, G. Y. Yin, and S. E. Harris, Phys. Rev. Lett. 75, 4385 (1995).
[CrossRef] [PubMed]

Chem. Phys. Lett. (1)

U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Külz, and K. Bergmann, Chem. Phys. Lett. 149, 463 (1988).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (3)

K. Hakuta, L. Marmet, and B. P. Stoicheff, Phys. Rev. A 45, 5152 (1992).
[CrossRef] [PubMed]

J. Oreg, F. T. Hioe, and J. H. Eberly, Phys. Rev. A 29, 690 (1984).
[CrossRef]

S. E. Harris and Z.-F. Luo, Phys. Rev. A 52, R928 (1995).
[CrossRef]

Phys. Rev. Lett. (4)

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, Phys. Rev. Lett. 77, 4326 (1996).
[CrossRef] [PubMed]

M. Jain, A. J. Merriam, A. Kasapi, G. Y. Yin, and S. E. Harris, Phys. Rev. Lett. 75, 4385 (1995).
[CrossRef] [PubMed]

S. P. Tewari and G. S. Agarwal, Phys. Rev. Lett. 56, 1811 (1986).
[CrossRef] [PubMed]

S. E. Harris, J. E. Field, and A. Imamoglu, Phys. Rev. Lett. 64, 1107 (1990).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Energy schematic for an optical parametric oscillator pumped by population-trapped atoms. Electro-magnetic fields at frequencies ωp and ωc drive population-trapped |1|2 transition atoms. The phase variation of these atoms as a function of z is determined by the detuning from two-photon resonance δω2. A small detuning of δω2 (typically a few hundred megahertz) causes phase matching and parametric gain at signal and idler frequencies ωs+ωi=ωp-ωc.

Fig. 2
Fig. 2

Parametric gain versus normalized signal frequency. For Pb vapor, the gain maximizes at 1.88 µm and has a bandwidth of 7500 cm-1.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

aq=122jμ1j2ωj-ω1-ωq+μ1j2ωj-ω1+ωq, dq=122jμ2j2ωj-ω2-ωq+μ2j2ωj-ω2+ωq, bq=122jμ1jμ2jωj-ω1-ωq+μ1jμ2jωj-ω2+ωq, cq=bq*.
Esz=-jηsωsNasρ11+dsρ22Es+bsρ12Ei*, Eiz=-jηiωiNaiρ11+diρ22Ei+ciρ12Es*.
ks=ηsωsNasρ11+dsρ22, ki=ηiωiNaiρ11+diρ22, κs=ηsωsNbsρ12, κi=ηiωiNciρ12.
ρ12=ρ12exp-jδkz, Δk=δk-ks+ki,
Esz=-jksEs-jκsEi* exp-jδkz, Eiz=-jkiEi-jκiEs* exp-jδkz.
E˜sLE˜s0=exp-jΔkL2cosh sL+jΔk2ssinh sLE˜iLE˜s*0=-jκisexp-jΔkL2sinh sL, s=κsκi-Δk241/2.
δk=-kp0+kc02δω2dcEc2.

Metrics