Abstract

Small amounts of self-phase modulation can lead to significant pulse distortions in chirped-pulse amplifiers. However, we show the surprising result that the strong chirp of the pulse can be exploited to remove these distortions completely by linear pulse shaping before amplification.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Strickland and G. Mourou, Opt. Commun. 56, 219 (1985).
    [Crossref]
  2. M. D. Perry, T. Ditmire, and B. C. Stuart, Opt. Lett. 19, 2149 (1994).
    [Crossref] [PubMed]
  3. B. H. Kolner, IEEE J. Quantum Electron. 30, 1951 (1994).
    [Crossref]
  4. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, Opt. Lett. 15, 326 (1990).
    [Crossref]
  5. C. W. Hillegas, J. X. Tull, D. Goswami, D. Strickland, and W. S. Warren, Opt. Lett. 19, 737 (1994).
    [Crossref] [PubMed]
  6. A. Efimov, C. Schaffer, and D. Reitze, J. Opt. Soc. Am. B 12, 1968 (1995).
    [Crossref]

1995 (1)

1994 (3)

1990 (1)

1985 (1)

D. Strickland and G. Mourou, Opt. Commun. 56, 219 (1985).
[Crossref]

Ditmire, T.

Efimov, A.

Goswami, D.

Hillegas, C. W.

Kolner, B. H.

B. H. Kolner, IEEE J. Quantum Electron. 30, 1951 (1994).
[Crossref]

Leaird, D. E.

Mourou, G.

D. Strickland and G. Mourou, Opt. Commun. 56, 219 (1985).
[Crossref]

Patel, J. S.

Perry, M. D.

Reitze, D.

Schaffer, C.

Strickland, D.

Stuart, B. C.

Tull, J. X.

Warren, W. S.

Weiner, A. M.

Wullert, J. R.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Quadratic temporal pulse stretcher and compressor; (b) equivalent spatial system, consisting of a one-to-one telescope.

Fig. 2
Fig. 2

Temporal and spatial imaging systems with (a) SPM and (b) an equivalently aberrating distortion.

Fig. 3
Fig. 3

Precompensation of nonquadratic phase distortions.

Fig. 4
Fig. 4

High-dynamic-range intensity profile of a pulse with 1  rad of nonlinear phase. The compressor configuration and the pulse shaper improve the contrast significantly.

Fig. 5
Fig. 5

High-dynamic-range intensity profile of a pulse with 3  rad of nonlinear phase.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Az, tz=i2β22Az, tt2,
Ex, zz=-i2k2Ex, zx2,
IstrtI0ω.
ϕNL=2πλn2ItL,

Metrics