Abstract

We describe a novel tunable optical filter for use in optical-frequency-domain multiplexed communication systems. The shift in the Bragg condition of a fiber Bragg grating as a result of magnetically induced circular birefringence is calculated with coupled-mode theory on the basis of circular states of polarization, and the values obtained for silica and terbium-doped optical fibers are compared.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. W. Morey, G. Meltz, and W. H. Green, in Proceedings of Optical Fiber Sensors '89, Vol. 44 of Springer Proceedings in Physics, (Springer-Verlag, Berlin, 1989), p. 526.
    [CrossRef]
  2. A. D. Kersey and M. J. Marrone, Proc. SPIE 2360, 53 (1994).
    [CrossRef]
  3. T. Meyer, P.-A. Nicati, P. A. Robert, D. Varelas, H.-G. Limberger, and P. Salathé, Opt. Lett. 21, 1661 (1996).
    [CrossRef] [PubMed]
  4. J. Sakai and T. Kimura, IEEE J. Quantum Electron. 18, 59 (1982).
    [CrossRef]
  5. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1996).
  6. C. Tang, IEEE Trans. Microwave Theory Technol. MTT-18, 69 (1970).
    [CrossRef]
  7. A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley-Interscience, New York, 1984).
  8. J. L. Arce-Diego, J. M. López-Higuera, and M. A. Muriel, in Proceedings of the Laser and Electro-Optics Society (Institute of Electrical and Electronics Engineers, New York, 1996), p. 307.

1996 (1)

1994 (1)

A. D. Kersey and M. J. Marrone, Proc. SPIE 2360, 53 (1994).
[CrossRef]

1982 (1)

J. Sakai and T. Kimura, IEEE J. Quantum Electron. 18, 59 (1982).
[CrossRef]

1970 (1)

C. Tang, IEEE Trans. Microwave Theory Technol. MTT-18, 69 (1970).
[CrossRef]

Arce-Diego, J. L.

J. L. Arce-Diego, J. M. López-Higuera, and M. A. Muriel, in Proceedings of the Laser and Electro-Optics Society (Institute of Electrical and Electronics Engineers, New York, 1996), p. 307.

Green, W. H.

V. W. Morey, G. Meltz, and W. H. Green, in Proceedings of Optical Fiber Sensors '89, Vol. 44 of Springer Proceedings in Physics, (Springer-Verlag, Berlin, 1989), p. 526.
[CrossRef]

Kersey, A. D.

A. D. Kersey and M. J. Marrone, Proc. SPIE 2360, 53 (1994).
[CrossRef]

Kimura, T.

J. Sakai and T. Kimura, IEEE J. Quantum Electron. 18, 59 (1982).
[CrossRef]

Limberger, H.-G.

López-Higuera, J. M.

J. L. Arce-Diego, J. M. López-Higuera, and M. A. Muriel, in Proceedings of the Laser and Electro-Optics Society (Institute of Electrical and Electronics Engineers, New York, 1996), p. 307.

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1996).

Marrone, M. J.

A. D. Kersey and M. J. Marrone, Proc. SPIE 2360, 53 (1994).
[CrossRef]

Meltz, G.

V. W. Morey, G. Meltz, and W. H. Green, in Proceedings of Optical Fiber Sensors '89, Vol. 44 of Springer Proceedings in Physics, (Springer-Verlag, Berlin, 1989), p. 526.
[CrossRef]

Meyer, T.

Morey, V. W.

V. W. Morey, G. Meltz, and W. H. Green, in Proceedings of Optical Fiber Sensors '89, Vol. 44 of Springer Proceedings in Physics, (Springer-Verlag, Berlin, 1989), p. 526.
[CrossRef]

Muriel, M. A.

J. L. Arce-Diego, J. M. López-Higuera, and M. A. Muriel, in Proceedings of the Laser and Electro-Optics Society (Institute of Electrical and Electronics Engineers, New York, 1996), p. 307.

Nicati, P.-A.

Robert, P. A.

Sakai, J.

J. Sakai and T. Kimura, IEEE J. Quantum Electron. 18, 59 (1982).
[CrossRef]

Salathé, P.

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1996).

Tang, C.

C. Tang, IEEE Trans. Microwave Theory Technol. MTT-18, 69 (1970).
[CrossRef]

Varelas, D.

Yariv, A.

A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley-Interscience, New York, 1984).

Yeh, P.

A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley-Interscience, New York, 1984).

IEEE J. Quantum Electron. (1)

J. Sakai and T. Kimura, IEEE J. Quantum Electron. 18, 59 (1982).
[CrossRef]

IEEE Trans. Microwave Theory Technol. (1)

C. Tang, IEEE Trans. Microwave Theory Technol. MTT-18, 69 (1970).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

A. D. Kersey and M. J. Marrone, Proc. SPIE 2360, 53 (1994).
[CrossRef]

Other (4)

V. W. Morey, G. Meltz, and W. H. Green, in Proceedings of Optical Fiber Sensors '89, Vol. 44 of Springer Proceedings in Physics, (Springer-Verlag, Berlin, 1989), p. 526.
[CrossRef]

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1996).

A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley-Interscience, New York, 1984).

J. L. Arce-Diego, J. M. López-Higuera, and M. A. Muriel, in Proceedings of the Laser and Electro-Optics Society (Institute of Electrical and Electronics Engineers, New York, 1996), p. 307.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Circular birefringence induced by the Faraday effect on each FBG layer. SOP, state of polarization.

Fig. 2
Fig. 2

Powers of the incident and reflected circularly polarized modes in a periodic layered medium when Δβ=0.

Fig. 3
Fig. 3

Wavelength shift induced by the Faraday effect in the FBG.

Fig. 4
Fig. 4

Bragg condition shift versus magnetic field in a standard optical fiber.

Fig. 5
Fig. 5

Bragg condition shift versus magnetic field in a terbium-doped optical fiber.

Fig. 6
Fig. 6

Spectral response of the proposed optical filter. LP, left polarization; CP, circular polarization; SLD, superluminescent diode.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

E=Aze1+Bze2expjωt, H=Azh1+Bzh2expjωt.
ddzAB=-jκ11κ21 κ12κ22AB,
κii=β0+ω0ei*ΔeidS, i=1, 2,
κij=κji*=ω0ei*ΔejdS, ij,
Δ=[0-ΔF0ΔF00000],
E=C+ expjwt-β+zR+C- expjwt-β-zL.
ddzC+C-=j[κ++κ+-κ-+κ-]C+C-,
KF=[VHz00-VHz], KF=[VHz00-VHz],
nf+=n+γHz2n, nf-=n-γHz2n,
ρ=πλn+-n-,
nf+=n+VHzλ2π nf-=n+VHzλ2π;
nf+-nf-=VHzλ/π.
k+2=ωc2n1+2+n2+22n¯+ωc2, k-2=ωc2n1-2+n2-22n¯-ωc2,
λBf+=2nf+Λ, λBf-=2nf-Λ.
λBf+-λBf-=2ΛVHzλ/π.

Metrics