Abstract

We demonstrate a Fourier spectrometer that uses intense ultrashort laser pulses. By exciting the 6S1/28S1/2 two-photon transition in atomic cesium vapor, we are able to measure the small hyperfine splitting of the 8S1/2 excited state. This technique, combining a high spectral resolution with the high peak intensities available to femtosecond laser systems, may offer intriguing opportunities for the study of multiphoton transitions and for spectroscopy in the short-wavelength region.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription