Abstract

We report on the performance of widely tunable femtosecond and continuous-wave Ti:sapphire lasers that use a newly developed ultrabroadband mirror set. The mirrors exhibit high reflectivity (R>99%) and smooth variation of group delay versus frequency over a wavelength range from 660 to 1060  nm. Mode-locked operation with pulse durations of 85  fs was achieved from 693 to 978  nm with only one set of ultrabroadband mirrors.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Demtröder, Laser Spectroscopy, 2nd ed. (Springer-Verlag, Berlin, 1996).
    [Crossref]
  2. J. D. Kafka, M. L. Watts, and J. W. J. Pieterse, IEEE J. Quantum Electron. 28, 2151 (1992).
    [Crossref]
  3. P. F. Moulton, J. Opt. Soc. Am. B 3, 125 (1986).
    [Crossref]
  4. D. E. Spence, P. N. Kean, and W. Sibbett, Opt. Lett. 16, 42 (1991).
    [Crossref] [PubMed]
  5. R. Szipőcs, K. Ferencz, Ch. Spielmann, and F. Krausz, Opt. Lett. 19, 201 (1994).
    [Crossref]
  6. R. Szipőcs and A. Kőházi-Kis, Proc. SPIE 2253, 140 (1994).
    [Crossref]
  7. L. Xu, Ch. Spielmann, F. Krausz, and R. Szipőcs, Opt. Lett. 21, 1259 (1996).
    [Crossref] [PubMed]
  8. A. Baltuska, Z. Wei, M. S. Pshenichnikov, and D. A. Wiersma, Opt. Lett. 22, 102 (1997).
    [Crossref] [PubMed]
  9. I. T. Sorokina, E. Sorokin, E. Wintner, A. Cassanho, H. P. Jenssen, and R. Szipőcs, Opt. Lett. 21, 1165 (1996).
    [Crossref] [PubMed]
  10. J. Hebling, E. J. Mayer, J. Kuhl, and R. Szipőcs, Opt. Lett. 20, 919 (1995).
    [Crossref] [PubMed]
  11. For a review, see, e.g., K. Ferencz and R. Szipőcs, Opt. Eng. 32, 2525 (1993).
    [Crossref]
  12. P. J. Martin, J. Mater. Sci. 21, 1 (1986).
    [Crossref]
  13. C. S. Masser, Newport Corporation, P.O. Box 19607, Irvine, Calif. 92713 (personal communication, 1995).
  14. A. F. Turner and P. W. Baumeister, Appl. Opt. 5, 69 (1966).
    [Crossref] [PubMed]
  15. O. S. Heavens and H. M. Liddell, Appl. Opt. 5, 373 (1966).
    [Crossref] [PubMed]
  16. J. Ebert, H. Pannhorst, H. Küster, and H. Welling, Appl. Opt. 18, 818 (1979).
    [Crossref] [PubMed]
  17. P. Laporta and V. Magni, Appl. Opt. 24, 2014 (1985).
    [Crossref]
  18. A. M. Weiner, J. G. Fujimoto, and E. P. Ippen, Opt. Lett. 10, 71 (1985).
    [Crossref] [PubMed]
  19. R. Szipőcs and A. Kőházi-Kis, “Theory and design of chirped mirrors,” submitted to Appl. Phys. B.
  20. A. P. Kovács, K. Osvay, Zs. Bor, and R. Szipőcs, Opt. Lett. 20, 788 (1995).
    [Crossref]

1997 (1)

1996 (2)

1995 (2)

1994 (2)

1993 (1)

For a review, see, e.g., K. Ferencz and R. Szipőcs, Opt. Eng. 32, 2525 (1993).
[Crossref]

1992 (1)

J. D. Kafka, M. L. Watts, and J. W. J. Pieterse, IEEE J. Quantum Electron. 28, 2151 (1992).
[Crossref]

1991 (1)

1986 (2)

1985 (2)

1979 (1)

1966 (2)

Baltuska, A.

Baumeister, P. W.

Bor, Zs.

Cassanho, A.

Demtröder, W.

W. Demtröder, Laser Spectroscopy, 2nd ed. (Springer-Verlag, Berlin, 1996).
[Crossref]

Ebert, J.

Ferencz, K.

R. Szipőcs, K. Ferencz, Ch. Spielmann, and F. Krausz, Opt. Lett. 19, 201 (1994).
[Crossref]

For a review, see, e.g., K. Ferencz and R. Szipőcs, Opt. Eng. 32, 2525 (1993).
[Crossref]

Fujimoto, J. G.

Heavens, O. S.

Hebling, J.

Ippen, E. P.

Jenssen, H. P.

Kafka, J. D.

J. D. Kafka, M. L. Watts, and J. W. J. Pieterse, IEEE J. Quantum Electron. 28, 2151 (1992).
[Crossref]

Kean, P. N.

Koházi-Kis, A.

R. Szipőcs and A. Kőházi-Kis, Proc. SPIE 2253, 140 (1994).
[Crossref]

R. Szipőcs and A. Kőházi-Kis, “Theory and design of chirped mirrors,” submitted to Appl. Phys. B.

Kovács, A. P.

Krausz, F.

Kuhl, J.

Küster, H.

Laporta, P.

Liddell, H. M.

Magni, V.

Martin, P. J.

P. J. Martin, J. Mater. Sci. 21, 1 (1986).
[Crossref]

Masser, C. S.

C. S. Masser, Newport Corporation, P.O. Box 19607, Irvine, Calif. 92713 (personal communication, 1995).

Mayer, E. J.

Moulton, P. F.

Osvay, K.

Pannhorst, H.

Pieterse, J. W. J.

J. D. Kafka, M. L. Watts, and J. W. J. Pieterse, IEEE J. Quantum Electron. 28, 2151 (1992).
[Crossref]

Pshenichnikov, M. S.

Sibbett, W.

Sorokin, E.

Sorokina, I. T.

Spence, D. E.

Spielmann, Ch.

Szipocs, R.

Turner, A. F.

Watts, M. L.

J. D. Kafka, M. L. Watts, and J. W. J. Pieterse, IEEE J. Quantum Electron. 28, 2151 (1992).
[Crossref]

Wei, Z.

Weiner, A. M.

Welling, H.

Wiersma, D. A.

Wintner, E.

Xu, L.

Appl. Opt. (4)

IEEE J. Quantum Electron. (1)

J. D. Kafka, M. L. Watts, and J. W. J. Pieterse, IEEE J. Quantum Electron. 28, 2151 (1992).
[Crossref]

J. Mater. Sci. (1)

P. J. Martin, J. Mater. Sci. 21, 1 (1986).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Eng. (1)

For a review, see, e.g., K. Ferencz and R. Szipőcs, Opt. Eng. 32, 2525 (1993).
[Crossref]

Opt. Lett. (8)

Proc. SPIE (1)

R. Szipőcs and A. Kőházi-Kis, Proc. SPIE 2253, 140 (1994).
[Crossref]

Other (3)

R. Szipőcs and A. Kőházi-Kis, “Theory and design of chirped mirrors,” submitted to Appl. Phys. B.

W. Demtröder, Laser Spectroscopy, 2nd ed. (Springer-Verlag, Berlin, 1996).
[Crossref]

C. S. Masser, Newport Corporation, P.O. Box 19607, Irvine, Calif. 92713 (personal communication, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Transmittance (solid curve) and group delay (dashed curve) of an UBCM versus wavelength. Optical thickness coefficients of the design are19 S|1.31L 1.70H 1.43L 0.66H 1.55L 1.45H 1.04L 1.20H 1.14L 1.32H 1.47L 0.99H 0.97L 1.17H 1.46L 1.15H 1.18L 1.11H 1.09L 1.08H 1.11L 1.33H 1.19L 0.91H 1.11L  0.96H 1.05L 0.83H 0.93L 1.11H 1.01L 0.98H 0.85L 0.90H 0.79L 0.99H 0.80L 0.93H 0.96L 0.60H 0.69L 1.09H 0.97L 0.41H 0.59L 1.35H 0.90L 0.10H|A, where S is substrate, nS=1.51; A is air, nA=1.0; and H  and L  are λ/4 layers of TiO2 and SiO2, respectively, at λ=790 nm, with nH=2.315, nL=1.45.

Fig. 2
Fig. 2

Output power (dots) and pulse duration (dashed line) of the fs Ti:S laser with UBCM's. For intracavity dispersion control, a standard Brewster-angled prism pair made of SF10 glass was used in a Coherent MIRA 900 laser with a prism separation of 60  cm.

Fig. 3
Fig. 3

(a) Autocorrelation curve (open circles) of the pulses at 805  nm (logarithmic scale). Dashed curve, Gaussian fit to the pulse shape. Inset: spectrum of the pulse (linear scale). (b) FRAC trace at λ=789 nm (Δλ=10.3 nm).

Metrics