Abstract

We introduce a transient-grating beam geometry for frequency-resolved optical-gating measurements of ultrashort laser pulses and show that it offers significant advantages over currently used geometries. Background free and phase matched over a long interaction length, it is the most sensitive third-order pulse-measurement geometry. In addition, for pulses greater than 300  fs in length and 1   µJ in energy, the nonlinear medium can be removed and the nonlinearity of air can be used to measure the pulse.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Trebino and D. J. Kane, J. Opt. Soc. Am. A 10, 1101 (1993);B. Kohler, V. V. Yakovlev, K. R. Wilson, J. Squier, K. W. DeLong, and R. Trebino, Opt. Lett. 20, 483 (1995).
    [CrossRef] [PubMed]
  2. K. W. DeLong, R. Trebino, and D. J. Kane, J. Opt. Soc. Am. B 11, 1595 (1994).
    [CrossRef]
  3. D. J. Kane and R. Trebino, J. Quantum Electron. 29, 571 (1993);T. Sharp-Clement, A. J. Taylor, and D. J. Kane, Opt. Lett. 20, 70 (1995).
    [CrossRef]
  4. H. J. Eichler, P. Gunther, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).
    [CrossRef]
  5. J. T. Fourkas and M. D. Fayer, Acc. Chem. Res. 25, 227 (1991).
    [CrossRef]
  6. A. C. Eckbreth, Appl. Phys. Lett. 32, 421 (1978).
    [CrossRef]
  7. Note that the geometric smearing of the delay because of the beam-crossing angle can easily be kept quite small (<15  fs in our experiments) and hence can be neglected. For shorter pulses, the smearing can be reduced further by using a smaller crossing angle and tighter focusing.

1994 (1)

1993 (2)

D. J. Kane and R. Trebino, J. Quantum Electron. 29, 571 (1993);T. Sharp-Clement, A. J. Taylor, and D. J. Kane, Opt. Lett. 20, 70 (1995).
[CrossRef]

R. Trebino and D. J. Kane, J. Opt. Soc. Am. A 10, 1101 (1993);B. Kohler, V. V. Yakovlev, K. R. Wilson, J. Squier, K. W. DeLong, and R. Trebino, Opt. Lett. 20, 483 (1995).
[CrossRef] [PubMed]

1991 (1)

J. T. Fourkas and M. D. Fayer, Acc. Chem. Res. 25, 227 (1991).
[CrossRef]

1978 (1)

A. C. Eckbreth, Appl. Phys. Lett. 32, 421 (1978).
[CrossRef]

DeLong, K. W.

Eckbreth, A. C.

A. C. Eckbreth, Appl. Phys. Lett. 32, 421 (1978).
[CrossRef]

Eichler, H. J.

H. J. Eichler, P. Gunther, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).
[CrossRef]

Fayer, M. D.

J. T. Fourkas and M. D. Fayer, Acc. Chem. Res. 25, 227 (1991).
[CrossRef]

Fourkas, J. T.

J. T. Fourkas and M. D. Fayer, Acc. Chem. Res. 25, 227 (1991).
[CrossRef]

Gunther, P.

H. J. Eichler, P. Gunther, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).
[CrossRef]

Kane, D. J.

Pohl, D. W.

H. J. Eichler, P. Gunther, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).
[CrossRef]

Trebino, R.

Acc. Chem. Res. (1)

J. T. Fourkas and M. D. Fayer, Acc. Chem. Res. 25, 227 (1991).
[CrossRef]

Appl. Phys. Lett. (1)

A. C. Eckbreth, Appl. Phys. Lett. 32, 421 (1978).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Quantum Electron. (1)

D. J. Kane and R. Trebino, J. Quantum Electron. 29, 571 (1993);T. Sharp-Clement, A. J. Taylor, and D. J. Kane, Opt. Lett. 20, 70 (1995).
[CrossRef]

Other (2)

H. J. Eichler, P. Gunther, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).
[CrossRef]

Note that the geometric smearing of the delay because of the beam-crossing angle can easily be kept quite small (<15  fs in our experiments) and hence can be neglected. For shorter pulses, the smearing can be reduced further by using a smaller crossing angle and tighter focusing.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the phase-matched TG FROG apparatus. The input pulses are denoted 1, 2, and 3, and the diffracted signal is denoted S. An instantaneous nonlinear-optical medium is placed at the overlap of the beams. The spectrum of the signal is measured as a function of the delay of one of the input pulses. The phase-matching condition is indicated by the wave vectors of the input and output beams shown at the lower left.

Fig. 2
Fig. 2

FROG traces of a 1-µJ pulse near 426  nm: (a) conventional PG FROG trace, (b) TG FROG trace in the PG mode obtained when pulse  1 is scanned. (c) TG FROG trace in the SD mode obtained when pulse  2 is scanned. The traces are shown as density plots with overlaid contour lines at 1, 2, 4, 6, 10, 20, 40, 60, and 80% of the peak.

Fig. 3
Fig. 3

Retrieved intensity and phase of the pulse from the traces in Fig. 2. Note that the retrieved pulses are nearly identical in all cases. Also shown is a comparison of the directly measured spectrum of the pulse and the retrieved spectra.

Fig. 4
Fig. 4

Intensity and phase retrieved from TG FROG traces obtained in both fused silica and air. The pulse duration obtained from air is 13% longer than that obtained from fused silica, consistent with the finite response time associated with air.

Metrics