Abstract

A combination of polarization-mode dispersion and polarization-dependent losses in optical fibers may lead to anomalous pulse spreading. We both calculate this effect and confirm its existence by an experimental demonstration.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. P. Poole and R. E. Wagner, Electron. Lett. 22, 1029 (1986).
    [CrossRef]
  2. C. D. Poole, Opt. Lett. 13, 687 (1988).
    [CrossRef]
  3. N. Gisin and the COST 241 Group, Pure Appl. Opt. 4, 511 (1995).
    [CrossRef]
  4. D. Marcuse, Bell Syst. Tech. J. 51, 1785 (1972).
    [CrossRef]
  5. N. Gisin and J. P. Pellaux, Opt. Commun. 89, 316 (1992).
    [CrossRef]
  6. C. D. Poole, J. H. Winters, and J. A. Nagel, Opt. Lett. 16, 372 (1991).
    [CrossRef] [PubMed]
  7. N. Gisin, Opt. Commun. 114, 399 (1995).
    [CrossRef]
  8. N. Gisin and B. Huttner, “Combined effects of polarization mode dispersion and polarization dependent losses in optical fibers,” submitted to Opt. Commun.
  9. S. Huard, Polarisation de la Lumière (Masson, Paris, 1993).
  10. B. H. Heffner, IEEE Photon. Technol. Lett. 4, 1066 (1992).
    [CrossRef]
  11. C. G. B. Garrett and D. E. McCumber, Phys. Rev. A 1, 305 (1969).
    [CrossRef]
  12. S. Chu and S. Wong, Phys. Rev. Lett. 48, 738 (1982).
    [CrossRef]
  13. R. Chiao, Phys. Rev. A 48, R34 (1993).
    [CrossRef]

1995 (2)

N. Gisin and the COST 241 Group, Pure Appl. Opt. 4, 511 (1995).
[CrossRef]

N. Gisin, Opt. Commun. 114, 399 (1995).
[CrossRef]

1993 (1)

R. Chiao, Phys. Rev. A 48, R34 (1993).
[CrossRef]

1992 (2)

B. H. Heffner, IEEE Photon. Technol. Lett. 4, 1066 (1992).
[CrossRef]

N. Gisin and J. P. Pellaux, Opt. Commun. 89, 316 (1992).
[CrossRef]

1991 (1)

1988 (1)

1986 (1)

C. P. Poole and R. E. Wagner, Electron. Lett. 22, 1029 (1986).
[CrossRef]

1982 (1)

S. Chu and S. Wong, Phys. Rev. Lett. 48, 738 (1982).
[CrossRef]

1972 (1)

D. Marcuse, Bell Syst. Tech. J. 51, 1785 (1972).
[CrossRef]

1969 (1)

C. G. B. Garrett and D. E. McCumber, Phys. Rev. A 1, 305 (1969).
[CrossRef]

Chiao, R.

R. Chiao, Phys. Rev. A 48, R34 (1993).
[CrossRef]

Chu, S.

S. Chu and S. Wong, Phys. Rev. Lett. 48, 738 (1982).
[CrossRef]

Garrett, C. G. B.

C. G. B. Garrett and D. E. McCumber, Phys. Rev. A 1, 305 (1969).
[CrossRef]

Gisin, N.

N. Gisin, Opt. Commun. 114, 399 (1995).
[CrossRef]

N. Gisin and the COST 241 Group, Pure Appl. Opt. 4, 511 (1995).
[CrossRef]

N. Gisin and J. P. Pellaux, Opt. Commun. 89, 316 (1992).
[CrossRef]

N. Gisin and B. Huttner, “Combined effects of polarization mode dispersion and polarization dependent losses in optical fibers,” submitted to Opt. Commun.

Heffner, B. H.

B. H. Heffner, IEEE Photon. Technol. Lett. 4, 1066 (1992).
[CrossRef]

Huard, S.

S. Huard, Polarisation de la Lumière (Masson, Paris, 1993).

Huttner, B.

N. Gisin and B. Huttner, “Combined effects of polarization mode dispersion and polarization dependent losses in optical fibers,” submitted to Opt. Commun.

Marcuse, D.

D. Marcuse, Bell Syst. Tech. J. 51, 1785 (1972).
[CrossRef]

McCumber, D. E.

C. G. B. Garrett and D. E. McCumber, Phys. Rev. A 1, 305 (1969).
[CrossRef]

Nagel, J. A.

Pellaux, J. P.

N. Gisin and J. P. Pellaux, Opt. Commun. 89, 316 (1992).
[CrossRef]

Poole, C. D.

Poole, C. P.

C. P. Poole and R. E. Wagner, Electron. Lett. 22, 1029 (1986).
[CrossRef]

Wagner, R. E.

C. P. Poole and R. E. Wagner, Electron. Lett. 22, 1029 (1986).
[CrossRef]

Winters, J. H.

Wong, S.

S. Chu and S. Wong, Phys. Rev. Lett. 48, 738 (1982).
[CrossRef]

Bell Syst. Tech. J. (1)

D. Marcuse, Bell Syst. Tech. J. 51, 1785 (1972).
[CrossRef]

Electron. Lett. (1)

C. P. Poole and R. E. Wagner, Electron. Lett. 22, 1029 (1986).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

B. H. Heffner, IEEE Photon. Technol. Lett. 4, 1066 (1992).
[CrossRef]

Opt. Commun. (2)

N. Gisin, Opt. Commun. 114, 399 (1995).
[CrossRef]

N. Gisin and J. P. Pellaux, Opt. Commun. 89, 316 (1992).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. A (2)

C. G. B. Garrett and D. E. McCumber, Phys. Rev. A 1, 305 (1969).
[CrossRef]

R. Chiao, Phys. Rev. A 48, R34 (1993).
[CrossRef]

Phys. Rev. Lett. (1)

S. Chu and S. Wong, Phys. Rev. Lett. 48, 738 (1982).
[CrossRef]

Pure Appl. Opt. (1)

N. Gisin and the COST 241 Group, Pure Appl. Opt. 4, 511 (1995).
[CrossRef]

Other (2)

N. Gisin and B. Huttner, “Combined effects of polarization mode dispersion and polarization dependent losses in optical fibers,” submitted to Opt. Commun.

S. Huard, Polarisation de la Lumière (Masson, Paris, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Experimental setup for the measurement of the DGD: This setup implements Jones matrix eigenanalysis. The tunable laser is followed by a polarization controller, which enables one to choose various input polarizations. The device under test is a concatenation of three fibers:one fiber with only PMD, then a fiber with both PMD and PDL, followed by another fiber with only PMD. The polarization at the output is measured by a polarimeter. At each wavelength, it is enough to measure the output polarizations for three different inputs to obtain the Jones matrix of the device. The DGD is calculated from the wavelength dependence of the Jones matrix (see Ref. 10 for more details).

Fig. 2
Fig. 2

Differential group delay (DGD) as a function of the wavelength. The device under test is a concatenation of three elements: one PDL fiber with PMD of 1.01  ps and differential attenuation of 18  dB, sandwiched between two Hi-Bi fibers with PMD of 5.65  ps. The solid curve represents the DGD of the concatenation when all three axes are aligned. The average DGD (dotted curve) is equal to the sum of the DGD's of the three elements. The dashed curve represents the value of the DGD when the axis of the PDL fiber is rotated by 45° with respect to both Hi-Bi fibers. In this case, the maximum DGD is larger than the sum of the DGD's of each component. The dashed–dotted curve is the corresponding theoretical curve.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

δτi=1Nδτi,
ψoutω=Tωψin=ANTNωψin,
TNω=bNeˆN·σ/2expb2eˆ2·σ/2×expb1eˆ1·σ/2,
ωTNTN-1ψoutω=-iλ2ψoutω,
ωTNTN-1=-i2βNeˆN·σ+expbNeˆN·σ/2×ωTN-1TN-1-1 exp-bNeˆN·σ/2,
ωTNTN-1=-i2WN·σ.
WN·σψoutω=λψoutω.
WN=βN+eˆN·WN-1·eˆN+cosh bNWN-1-WN-1·eˆNeˆN-isinh bNWN-1eˆN,
Wω=β3+β1 cosh b2, β2 sin β3ω+iβ1 cos β3ω sinh b2, β2 cos β3ω-iβ1 sin β3ω sinh b2,
δτmax=β12+β22+β32+2β1β3 cosh α21/2.
j=13τjsτj=13τjf.

Metrics