Abstract

We demonstrate a highly sensitive temperature sensor based on a stress-induced high-birefringence-fiber Sagnac loop that uses a Nd-doped-fiber amplified spontaneous emission source. Relative temperature sensing is done in the spectral domain by shifts of a resonant wavelength λr and absolute temperature sensing by changes in separation between resonances Δλ. The measured relative change of these parameters with temperature in the range 15–110 °C, is 1/λrδλr/δT=-1/ΔλδΔλ/δT1/ΔnδΔn/δT-0.94±0.02×10-3/K, with measured fiber birefringence Δn=8×10-4. This gives a wavelength-shift sensitivity of -1.00 nm/K at 1.065 µm and a resonance separation sensitivity of 0.006 nm/K for Δλ=6.8 nm. This telemetric point sensor has a loop length of 80 m, an operational bandwidth of more than 50 nm, and a temperature accuracy of better than 1 °C.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. B. Hocker, Appl. Opt. 18, 1445 (1979).
    [CrossRef] [PubMed]
  2. W. Eickhoff, Opt. Lett. 6, 204 (1981).
    [CrossRef] [PubMed]
  3. W. W. Morey, G. Meltz, and W. H. Glenn, Proc. SPIE 1169, 98 (1989).
    [CrossRef]
  4. V. Bhatia and A. M. Vengsarkar, Opt. Lett. 21, 692 (1996).
    [CrossRef] [PubMed]
  5. S. E. Kanellopoulos, V. A. Handerek, and A. J. Rogers, Opt. Lett. 18, 1013 (1993).
    [CrossRef] [PubMed]
  6. L. A. Zenteno, J. Lightwave Technol. 11, 1435 (1993).
    [CrossRef]
  7. A. Starodumov, L. A. Zenteno, D. Monzon, and A. R. Boyain, Proc. SPIE 2730, 509 (1996).
    [CrossRef]
  8. A. Starodumov, L. A. Zenteno, D. Monzon, and E. De la Rosa, Appl. Phys. Lett. 70, 1 (1997).
    [CrossRef]
  9. W. Eickhoff, Opt. Lett. 7, 629 (1982).
    [CrossRef] [PubMed]
  10. S. C. Rashleigh and M. J. Marrone, Opt. Lett. 8, 127 (1983).
    [CrossRef] [PubMed]
  11. S. C. Rashleigh and R. Ulrich, Opt. Lett. 3, 60 (1978).
    [CrossRef] [PubMed]

1997 (1)

A. Starodumov, L. A. Zenteno, D. Monzon, and E. De la Rosa, Appl. Phys. Lett. 70, 1 (1997).
[CrossRef]

1996 (2)

A. Starodumov, L. A. Zenteno, D. Monzon, and A. R. Boyain, Proc. SPIE 2730, 509 (1996).
[CrossRef]

V. Bhatia and A. M. Vengsarkar, Opt. Lett. 21, 692 (1996).
[CrossRef] [PubMed]

1993 (2)

1989 (1)

W. W. Morey, G. Meltz, and W. H. Glenn, Proc. SPIE 1169, 98 (1989).
[CrossRef]

1983 (1)

1982 (1)

1981 (1)

1979 (1)

1978 (1)

Bhatia, V.

Boyain, A. R.

A. Starodumov, L. A. Zenteno, D. Monzon, and A. R. Boyain, Proc. SPIE 2730, 509 (1996).
[CrossRef]

De la Rosa, E.

A. Starodumov, L. A. Zenteno, D. Monzon, and E. De la Rosa, Appl. Phys. Lett. 70, 1 (1997).
[CrossRef]

Eickhoff, W.

Glenn, W. H.

W. W. Morey, G. Meltz, and W. H. Glenn, Proc. SPIE 1169, 98 (1989).
[CrossRef]

Handerek, V. A.

Hocker, G. B.

Kanellopoulos, S. E.

Marrone, M. J.

Meltz, G.

W. W. Morey, G. Meltz, and W. H. Glenn, Proc. SPIE 1169, 98 (1989).
[CrossRef]

Monzon, D.

A. Starodumov, L. A. Zenteno, D. Monzon, and E. De la Rosa, Appl. Phys. Lett. 70, 1 (1997).
[CrossRef]

A. Starodumov, L. A. Zenteno, D. Monzon, and A. R. Boyain, Proc. SPIE 2730, 509 (1996).
[CrossRef]

Morey, W. W.

W. W. Morey, G. Meltz, and W. H. Glenn, Proc. SPIE 1169, 98 (1989).
[CrossRef]

Rashleigh, S. C.

Rogers, A. J.

Starodumov, A.

A. Starodumov, L. A. Zenteno, D. Monzon, and E. De la Rosa, Appl. Phys. Lett. 70, 1 (1997).
[CrossRef]

A. Starodumov, L. A. Zenteno, D. Monzon, and A. R. Boyain, Proc. SPIE 2730, 509 (1996).
[CrossRef]

Ulrich, R.

Vengsarkar, A. M.

Zenteno, L. A.

A. Starodumov, L. A. Zenteno, D. Monzon, and E. De la Rosa, Appl. Phys. Lett. 70, 1 (1997).
[CrossRef]

A. Starodumov, L. A. Zenteno, D. Monzon, and A. R. Boyain, Proc. SPIE 2730, 509 (1996).
[CrossRef]

L. A. Zenteno, J. Lightwave Technol. 11, 1435 (1993).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. Starodumov, L. A. Zenteno, D. Monzon, and E. De la Rosa, Appl. Phys. Lett. 70, 1 (1997).
[CrossRef]

J. Lightwave Technol. (1)

L. A. Zenteno, J. Lightwave Technol. 11, 1435 (1993).
[CrossRef]

Opt. Lett. (6)

Proc. SPIE (2)

W. W. Morey, G. Meltz, and W. H. Glenn, Proc. SPIE 1169, 98 (1989).
[CrossRef]

A. Starodumov, L. A. Zenteno, D. Monzon, and A. R. Boyain, Proc. SPIE 2730, 509 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the all-fiber temperature sensor. It consists of a laser diode (LD)-pumped, Nd-doped FASES and a polarization-maintaining coupler made of stress-induced high-birefringence fiber (Hi–Bi) with cross-spliced arms a and b. The arms’ length difference L=La-Lb is the sensor head.

Fig. 2
Fig. 2

Optical spectrum transmitted by the Sagnac loop with L=20.7 cm. It consists of the Nd-doped germanosilicate FASES spectrum modulated by a harmonic function as expected from a two-beam interferometer. The spectrum peaks near λ=1.058 µm and has a period Δλ=6.8 nm and a full bandwidth measured at 1/e from maximum of 50 nm.

Fig. 3
Fig. 3

Relative resonance wavelength shift versus temperature T over the range 15–110 °C T0=15 °C. The solid circles represent experimental points, and the solid line is a linear fit through these points; the measured slope is -0.9389±0.02×10-3/K. From this slope, the fiber’s material constant δΔn/δT7.5×10-7/K is inferred for Δn=8×10-4.

Fig. 4
Fig. 4

Optical spectra at 35 and 169 °C for a Sagnac loop with L=36.5 cm. The order of interference near the peak of each spectrum differs by 34. At 35 °C the spectral separation between 12 orders of interference is 44.8 nm; at 169 °C the separation between 11 orders is 46.2 nm. The average rate of change of the separation between consecutive resonances is 0.0036 nm/K, and the cumulative rate over 12 orders is 0.045 nm/K.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

1LδϕδT=2πλB1BδBδT+1LδLδT,
1λrδλrδT=-1ΔλδΔλδT=1BδBδT+1LδLδT,

Metrics