Abstract

We have developed a frequency-modulated, tunable, amplitude-squeezed, diode-laser-based source and used it to perform FM spectroscopy on rubidium. The setup consists of a free-running diode laser injection locked by a frequency-stabilized, current-modulated diode laser. The injection-locked slave laser beam adopted the frequency spectrum of the master laser beam while rejecting residual AM in the master laser beam by more than 50 dB. Injection locking also enhanced amplitude squeezing in the slave laser beam by suppressing uncorrelated longitudinal sidemodes. The noise floor of the measurement was 0.8 dB below the shot-noise level.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription