Abstract

We have developed a frequency-modulated, tunable, amplitude-squeezed, diode-laser-based source and used it to perform FM spectroscopy on rubidium. The setup consists of a free-running diode laser injection locked by a frequency-stabilized, current-modulated diode laser. The injection-locked slave laser beam adopted the frequency spectrum of the master laser beam while rejecting residual AM in the master laser beam by more than 50 dB. Injection locking also enhanced amplitude squeezing in the slave laser beam by suppressing uncorrelated longitudinal sidemodes. The noise floor of the measurement was 0.8 dB below the shot-noise level.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Yamamoto and H. A. Haus, Phys. Rev. A 34, 4025 (1986).
    [Crossref] [PubMed]
  2. S. Machida and Y. Yamamoto, Opt. Lett. 14, 1045 (1989).
    [Crossref] [PubMed]
  3. S. Machida and Y. Yamamoto, Phys. Rev. Lett. 60, 792 (1988).
    [Crossref] [PubMed]
  4. W. H. Richardson, S. Machida, and Y. Yamamoto, Phys. Rev. Lett. 66, 2867 (1991).
    [Crossref] [PubMed]
  5. S. Inoue, H. Ohzu, S. Machida, and Y. Yamamoto, Phys. Rev. A 48, 2230 (1993).
    [Crossref] [PubMed]
  6. H. Wang, M. J. Freeman, and D. G. Steel, Phys. Rev. Lett. 71, 3951 (1993).
    [Crossref] [PubMed]
  7. F. Marin, Phys. Rev. Lett. 75, 4606 (1996).
    [Crossref]
  8. M. J. Freeman, H. Wang, D. G. Steel, R. Craig, and D. R. Scifres, Opt. Lett. 18, 2141 (1993).
    [Crossref]
  9. D. Kilper, D. Steel, R. Craig, and D. Scifres, Opt. Lett. 21, 1283 (1996).
    [Crossref] [PubMed]
  10. D. C. Kilper, A. C. Schaefer, J. Erland, and D. G. Steel, Phys. Rev. A 54, R1785 (1996).
    [Crossref]
  11. G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Oritz, Appl. Phys. B 32, 145 (1983).
    [Crossref]
  12. E. S. Polzik, J. Carri, and H. J. Kimble, Phys. Rev. Lett. 68, 3020 (1992).
    [Crossref] [PubMed]
  13. S. Kobayashi, IEEE J. Quantum Electron. QE-18, 582 (1982).
    [Crossref]
  14. M. J. Freeman, H. Wang, D. G. Steel, R. Craig, and D. R. Scifres, Opt. Lett. 18, 379 (1993).
    [Crossref] [PubMed]
  15. S. Inoue, H. Ohzu, S. Machida, and Y. Yamamoto, Phys. Rev. A 46, 2757 (1992).
    [Crossref] [PubMed]
  16. M. Gehrtz, C. G. Bjorklund, and E. A. Whittaker, J. Opt. Soc. Am. B 2, 1010 (1985).
    [Crossref]
  17. S. Kobayashi, in Coherence, Amplification and Quantum Effects in Semiconductor Laser, Y. Yamamoto, ed. (Wiley, New York, 1991).
  18. O. Nilsson and Y. Yamamoto, Appl. Phys. Lett. 46, 223 (1983).
    [Crossref]
  19. Y. Yoshikuni and G. Motosugi, J. Lightwave Technol. LT-5, 516 (1987).
    [Crossref]

1996 (3)

F. Marin, Phys. Rev. Lett. 75, 4606 (1996).
[Crossref]

D. Kilper, D. Steel, R. Craig, and D. Scifres, Opt. Lett. 21, 1283 (1996).
[Crossref] [PubMed]

D. C. Kilper, A. C. Schaefer, J. Erland, and D. G. Steel, Phys. Rev. A 54, R1785 (1996).
[Crossref]

1993 (4)

1992 (2)

S. Inoue, H. Ohzu, S. Machida, and Y. Yamamoto, Phys. Rev. A 46, 2757 (1992).
[Crossref] [PubMed]

E. S. Polzik, J. Carri, and H. J. Kimble, Phys. Rev. Lett. 68, 3020 (1992).
[Crossref] [PubMed]

1991 (1)

W. H. Richardson, S. Machida, and Y. Yamamoto, Phys. Rev. Lett. 66, 2867 (1991).
[Crossref] [PubMed]

1989 (1)

1988 (1)

S. Machida and Y. Yamamoto, Phys. Rev. Lett. 60, 792 (1988).
[Crossref] [PubMed]

1987 (1)

Y. Yoshikuni and G. Motosugi, J. Lightwave Technol. LT-5, 516 (1987).
[Crossref]

1986 (1)

Y. Yamamoto and H. A. Haus, Phys. Rev. A 34, 4025 (1986).
[Crossref] [PubMed]

1985 (1)

1983 (2)

O. Nilsson and Y. Yamamoto, Appl. Phys. Lett. 46, 223 (1983).
[Crossref]

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Oritz, Appl. Phys. B 32, 145 (1983).
[Crossref]

1982 (1)

S. Kobayashi, IEEE J. Quantum Electron. QE-18, 582 (1982).
[Crossref]

Bjorklund, C. G.

Bjorklund, G. C.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Oritz, Appl. Phys. B 32, 145 (1983).
[Crossref]

Carri, J.

E. S. Polzik, J. Carri, and H. J. Kimble, Phys. Rev. Lett. 68, 3020 (1992).
[Crossref] [PubMed]

Craig, R.

Erland, J.

D. C. Kilper, A. C. Schaefer, J. Erland, and D. G. Steel, Phys. Rev. A 54, R1785 (1996).
[Crossref]

Freeman, M. J.

Gehrtz, M.

Haus, H. A.

Y. Yamamoto and H. A. Haus, Phys. Rev. A 34, 4025 (1986).
[Crossref] [PubMed]

Inoue, S.

S. Inoue, H. Ohzu, S. Machida, and Y. Yamamoto, Phys. Rev. A 48, 2230 (1993).
[Crossref] [PubMed]

S. Inoue, H. Ohzu, S. Machida, and Y. Yamamoto, Phys. Rev. A 46, 2757 (1992).
[Crossref] [PubMed]

Kilper, D.

Kilper, D. C.

D. C. Kilper, A. C. Schaefer, J. Erland, and D. G. Steel, Phys. Rev. A 54, R1785 (1996).
[Crossref]

Kimble, H. J.

E. S. Polzik, J. Carri, and H. J. Kimble, Phys. Rev. Lett. 68, 3020 (1992).
[Crossref] [PubMed]

Kobayashi, S.

S. Kobayashi, IEEE J. Quantum Electron. QE-18, 582 (1982).
[Crossref]

S. Kobayashi, in Coherence, Amplification and Quantum Effects in Semiconductor Laser, Y. Yamamoto, ed. (Wiley, New York, 1991).

Lenth, W.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Oritz, Appl. Phys. B 32, 145 (1983).
[Crossref]

Levenson, M. D.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Oritz, Appl. Phys. B 32, 145 (1983).
[Crossref]

Machida, S.

S. Inoue, H. Ohzu, S. Machida, and Y. Yamamoto, Phys. Rev. A 48, 2230 (1993).
[Crossref] [PubMed]

S. Inoue, H. Ohzu, S. Machida, and Y. Yamamoto, Phys. Rev. A 46, 2757 (1992).
[Crossref] [PubMed]

W. H. Richardson, S. Machida, and Y. Yamamoto, Phys. Rev. Lett. 66, 2867 (1991).
[Crossref] [PubMed]

S. Machida and Y. Yamamoto, Opt. Lett. 14, 1045 (1989).
[Crossref] [PubMed]

S. Machida and Y. Yamamoto, Phys. Rev. Lett. 60, 792 (1988).
[Crossref] [PubMed]

Marin, F.

F. Marin, Phys. Rev. Lett. 75, 4606 (1996).
[Crossref]

Motosugi, G.

Y. Yoshikuni and G. Motosugi, J. Lightwave Technol. LT-5, 516 (1987).
[Crossref]

Nilsson, O.

O. Nilsson and Y. Yamamoto, Appl. Phys. Lett. 46, 223 (1983).
[Crossref]

Ohzu, H.

S. Inoue, H. Ohzu, S. Machida, and Y. Yamamoto, Phys. Rev. A 48, 2230 (1993).
[Crossref] [PubMed]

S. Inoue, H. Ohzu, S. Machida, and Y. Yamamoto, Phys. Rev. A 46, 2757 (1992).
[Crossref] [PubMed]

Oritz, C.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Oritz, Appl. Phys. B 32, 145 (1983).
[Crossref]

Polzik, E. S.

E. S. Polzik, J. Carri, and H. J. Kimble, Phys. Rev. Lett. 68, 3020 (1992).
[Crossref] [PubMed]

Richardson, W. H.

W. H. Richardson, S. Machida, and Y. Yamamoto, Phys. Rev. Lett. 66, 2867 (1991).
[Crossref] [PubMed]

Schaefer, A. C.

D. C. Kilper, A. C. Schaefer, J. Erland, and D. G. Steel, Phys. Rev. A 54, R1785 (1996).
[Crossref]

Scifres, D.

Scifres, D. R.

Steel, D.

Steel, D. G.

D. C. Kilper, A. C. Schaefer, J. Erland, and D. G. Steel, Phys. Rev. A 54, R1785 (1996).
[Crossref]

H. Wang, M. J. Freeman, and D. G. Steel, Phys. Rev. Lett. 71, 3951 (1993).
[Crossref] [PubMed]

M. J. Freeman, H. Wang, D. G. Steel, R. Craig, and D. R. Scifres, Opt. Lett. 18, 2141 (1993).
[Crossref]

M. J. Freeman, H. Wang, D. G. Steel, R. Craig, and D. R. Scifres, Opt. Lett. 18, 379 (1993).
[Crossref] [PubMed]

Wang, H.

Whittaker, E. A.

Yamamoto, Y.

S. Inoue, H. Ohzu, S. Machida, and Y. Yamamoto, Phys. Rev. A 48, 2230 (1993).
[Crossref] [PubMed]

S. Inoue, H. Ohzu, S. Machida, and Y. Yamamoto, Phys. Rev. A 46, 2757 (1992).
[Crossref] [PubMed]

W. H. Richardson, S. Machida, and Y. Yamamoto, Phys. Rev. Lett. 66, 2867 (1991).
[Crossref] [PubMed]

S. Machida and Y. Yamamoto, Opt. Lett. 14, 1045 (1989).
[Crossref] [PubMed]

S. Machida and Y. Yamamoto, Phys. Rev. Lett. 60, 792 (1988).
[Crossref] [PubMed]

Y. Yamamoto and H. A. Haus, Phys. Rev. A 34, 4025 (1986).
[Crossref] [PubMed]

O. Nilsson and Y. Yamamoto, Appl. Phys. Lett. 46, 223 (1983).
[Crossref]

Yoshikuni, Y.

Y. Yoshikuni and G. Motosugi, J. Lightwave Technol. LT-5, 516 (1987).
[Crossref]

Appl. Phys. B (1)

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Oritz, Appl. Phys. B 32, 145 (1983).
[Crossref]

Appl. Phys. Lett. (1)

O. Nilsson and Y. Yamamoto, Appl. Phys. Lett. 46, 223 (1983).
[Crossref]

IEEE J. Quantum Electron. (1)

S. Kobayashi, IEEE J. Quantum Electron. QE-18, 582 (1982).
[Crossref]

J. Lightwave Technol. (1)

Y. Yoshikuni and G. Motosugi, J. Lightwave Technol. LT-5, 516 (1987).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Lett. (4)

Phys. Rev. A (4)

S. Inoue, H. Ohzu, S. Machida, and Y. Yamamoto, Phys. Rev. A 48, 2230 (1993).
[Crossref] [PubMed]

D. C. Kilper, A. C. Schaefer, J. Erland, and D. G. Steel, Phys. Rev. A 54, R1785 (1996).
[Crossref]

S. Inoue, H. Ohzu, S. Machida, and Y. Yamamoto, Phys. Rev. A 46, 2757 (1992).
[Crossref] [PubMed]

Y. Yamamoto and H. A. Haus, Phys. Rev. A 34, 4025 (1986).
[Crossref] [PubMed]

Phys. Rev. Lett. (5)

E. S. Polzik, J. Carri, and H. J. Kimble, Phys. Rev. Lett. 68, 3020 (1992).
[Crossref] [PubMed]

H. Wang, M. J. Freeman, and D. G. Steel, Phys. Rev. Lett. 71, 3951 (1993).
[Crossref] [PubMed]

F. Marin, Phys. Rev. Lett. 75, 4606 (1996).
[Crossref]

S. Machida and Y. Yamamoto, Phys. Rev. Lett. 60, 792 (1988).
[Crossref] [PubMed]

W. H. Richardson, S. Machida, and Y. Yamamoto, Phys. Rev. Lett. 66, 2867 (1991).
[Crossref] [PubMed]

Other (1)

S. Kobayashi, in Coherence, Amplification and Quantum Effects in Semiconductor Laser, Y. Yamamoto, ed. (Wiley, New York, 1991).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Setup for FM spectroscopy of rubidium. The atomic sample was a sealed cell of rubidium whose vapor density was controlled by a thermoelectric cooler. 2% of an external-grating-feedback master laser beam was injected into a cw slave laser to enhance squeezing and control its frequency. 10 mW of the master laser pumped the rubidium atoms while the unattenuated probe laser beam probed saturated atoms. FM sidebands were induced on the master laser beam by direct current modulation.

Fig. 2
Fig. 2

Squeezed noise spectrum of the injection-locked slave diode laser at 32 °C. The upper trace is the shot-noise level generated by filtered thermal white light. The lower, modulated trace shows the combining mixer switch between the added (laser noise) and the subtracted (shot-noise) signals with 97-mA drive current, 17.25-mA/detector, 300-kHz resolution bandwidth, and 100-Hz video bandwidth.

Fig. 3
Fig. 3

Velocity diagram for pump–probe spectroscopy. The weak lower FM sideband of the probe (slave laser beam) interacts with the velocity class that has been saturated by the carrier component of the pump (master laser beam). The carrier of the probe is off resonance, so a high-intensity probe carrier could be used.

Fig. 4
Fig. 4

Sub-shot-noise FM spectroscopy on R85b. The upper trace is the shot-noise level. The lower trace is the FM-to-AM-converted signal. The cold finger of the rubidium cell was at -3 °C. 300-kHz resolution bandwidth, 100-kHz video bandwidth.

Metrics