Abstract

The concept of a one-dimensional optical wave and its waveguides are proposed for what is to our knowledge the first time. The proposed waveguides are principally new and named for one-dimensional optical waveguides. One-dimensional optical waveguides make it possible to guide very thin optical beams in the visible or the near-infrared region with a diameter in the nanometer range. The propagation properties are analyzed theoretically. The applications of the waveguides to optical devices in the nanometer range are discussed.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Takano and J. Hamasaki, IEEE J. Quantum Electron. QE-8, 206 (1972).
    [CrossRef]
  2. W. Johnstone, G. Stewart, T. Hark, and B. Culshaw, J. Lightwave Technol. 8, 538 (1990).
    [CrossRef]
  3. J. J. Burke, G. I. Stegeman, and T. Tamir, Phys. Rev. B 33, 5186 (1986).
    [CrossRef]
  4. T. Kobayashi, H. Taki, A. Morimoto, and M. Kitagawa, in Quantum Electronics and Lasers Conference, Vol. 16 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), p. 218.

1990 (1)

W. Johnstone, G. Stewart, T. Hark, and B. Culshaw, J. Lightwave Technol. 8, 538 (1990).
[CrossRef]

1986 (1)

J. J. Burke, G. I. Stegeman, and T. Tamir, Phys. Rev. B 33, 5186 (1986).
[CrossRef]

1972 (1)

T. Takano and J. Hamasaki, IEEE J. Quantum Electron. QE-8, 206 (1972).
[CrossRef]

Burke, J. J.

J. J. Burke, G. I. Stegeman, and T. Tamir, Phys. Rev. B 33, 5186 (1986).
[CrossRef]

Culshaw, B.

W. Johnstone, G. Stewart, T. Hark, and B. Culshaw, J. Lightwave Technol. 8, 538 (1990).
[CrossRef]

Hamasaki, J.

T. Takano and J. Hamasaki, IEEE J. Quantum Electron. QE-8, 206 (1972).
[CrossRef]

Hark, T.

W. Johnstone, G. Stewart, T. Hark, and B. Culshaw, J. Lightwave Technol. 8, 538 (1990).
[CrossRef]

Johnstone, W.

W. Johnstone, G. Stewart, T. Hark, and B. Culshaw, J. Lightwave Technol. 8, 538 (1990).
[CrossRef]

Kitagawa, M.

T. Kobayashi, H. Taki, A. Morimoto, and M. Kitagawa, in Quantum Electronics and Lasers Conference, Vol. 16 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), p. 218.

Kobayashi, T.

T. Kobayashi, H. Taki, A. Morimoto, and M. Kitagawa, in Quantum Electronics and Lasers Conference, Vol. 16 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), p. 218.

Morimoto, A.

T. Kobayashi, H. Taki, A. Morimoto, and M. Kitagawa, in Quantum Electronics and Lasers Conference, Vol. 16 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), p. 218.

Stegeman, G. I.

J. J. Burke, G. I. Stegeman, and T. Tamir, Phys. Rev. B 33, 5186 (1986).
[CrossRef]

Stewart, G.

W. Johnstone, G. Stewart, T. Hark, and B. Culshaw, J. Lightwave Technol. 8, 538 (1990).
[CrossRef]

Takano, T.

T. Takano and J. Hamasaki, IEEE J. Quantum Electron. QE-8, 206 (1972).
[CrossRef]

Taki, H.

T. Kobayashi, H. Taki, A. Morimoto, and M. Kitagawa, in Quantum Electronics and Lasers Conference, Vol. 16 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), p. 218.

Tamir, T.

J. J. Burke, G. I. Stegeman, and T. Tamir, Phys. Rev. B 33, 5186 (1986).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. Takano and J. Hamasaki, IEEE J. Quantum Electron. QE-8, 206 (1972).
[CrossRef]

J. Lightwave Technol. (1)

W. Johnstone, G. Stewart, T. Hark, and B. Culshaw, J. Lightwave Technol. 8, 538 (1990).
[CrossRef]

Phys. Rev. B (1)

J. J. Burke, G. I. Stegeman, and T. Tamir, Phys. Rev. B 33, 5186 (1986).
[CrossRef]

Other (1)

T. Kobayashi, H. Taki, A. Morimoto, and M. Kitagawa, in Quantum Electronics and Lasers Conference, Vol. 16 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), p. 218.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Examples of 1D optical waveguides: (a) ND pin, (b) ND hole, (c) ND coaxial, (d) ND tube, (e) ND parallel lines, and (f) ND parallel holes. The shaded area shows the ND.

Fig. 2
Fig. 2

Phase constant and beam radius in the ND pin with respect to the core radius. The solid and the dashed curves show the phase constant and the beam radius, respectively. Inset: cross-sectional view of the ND pin and the typical field distribution of the TM mode Hϕ in it. The definition of the beam radius is given.

Fig. 3
Fig. 3

Transmission loss in the ND pin with respect to the core radius. The solid, the dotted, and the dashed–dotted curves show the loss at various imaginary parts of δ=0.53, 0.265, and 0.177, respectively. δ=0.53 has been taken from the actual value of silver; the other δ values are one half and one third of the actual values.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

β2+kx2+ky2=coreμ0ω2,
β2-κx2-κy2=cladμ0ω2,
β,kx,ky,κx,κyωcoreμ0=2πncoreλ0,
dx,dyλ02ncore.
Ez1=AI0γ1r, Er1=iβγ1AI1γ1r, Hϕ1=iω1γ1AI1γ1r,
Ez2=BK0γ2r, Er2=-iβγ2BK1γ2r, Hϕ2=-iω2γ2BK1γ2r,
γj=β2-jμ0ω21/2.
γ2I1γ1aK0γ2aγ1I0γ1aK1γ2a=-21.
K1γ2rH=1eK1γ2a.

Metrics