Abstract

We numerically show that a laser that would suffer from coherence collapse if precautions were not taken can be made to operate with a small linewidth and a stable maximum output power by application of a new dynamic targeting technique.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Lenstra, B. H. Verbeek, and A. J. den Boef, IEEE J. Quantum Electron. QE-21, 674 (1985).
    [CrossRef]
  2. J. Mørk, B. Tromborg, and P. L. Christiansen, IEEE J. Quantum Electron. 24, 123 (1988).
    [CrossRef]
  3. B. Tromborg and J. Mørk, IEEE Photon. Technol. Lett. 2, 549 (1990).
    [CrossRef]
  4. T. Erneux, G. H. M. van Tartwijk, D. Lenstra, and A. M. Levine, Phys. Rev. A. (to be published).
  5. A. M. Levine, G. H. M. van Tartwijk, D. Lenstra, and T. Erneux, Phys. Rev. A 52, R3436 (1995).
    [CrossRef]
  6. B. Dahmani, L. Hollberg, and R. Drullinger, Opt. Lett. 12, 876 (1987).
    [CrossRef] [PubMed]
  7. E. Ott, C. Grebogi, and J. A. Yorke, Phys. Rev. Lett. 64, 1196 (1990).
    [CrossRef] [PubMed]
  8. R. Roy, Z. Gills, and K. Scott Thornburg, Opt. Photon. News 5(5), 8 (1994).
    [CrossRef]
  9. R. Lang and K. Kobayashi, IEEE J. Quantum Electron. QE-16, 347 (1980).
    [CrossRef]
  10. T. Sano, Phys. Rev. A 50, 2719 (1994).
    [CrossRef] [PubMed]
  11. K. Petermann, Laser Diode Modulation and Noise (Kluwer, Dordrecht, The Netherlands, 1988).
    [CrossRef]
  12. C. R. Mirasso, M. Mulder, H. J. W. Spoelder, and D. Lenstra, Comput. Phys. (to be published).
  13. J. Mørk, S. Semkow, and B. Tromborg, Electron. Lett. 26, 609 (1990).
    [CrossRef]
  14. D. Lenstra, Opt. Commun. 81, 209 (1991).
    [CrossRef]

1995 (1)

A. M. Levine, G. H. M. van Tartwijk, D. Lenstra, and T. Erneux, Phys. Rev. A 52, R3436 (1995).
[CrossRef]

1994 (2)

R. Roy, Z. Gills, and K. Scott Thornburg, Opt. Photon. News 5(5), 8 (1994).
[CrossRef]

T. Sano, Phys. Rev. A 50, 2719 (1994).
[CrossRef] [PubMed]

1991 (1)

D. Lenstra, Opt. Commun. 81, 209 (1991).
[CrossRef]

1990 (3)

J. Mørk, S. Semkow, and B. Tromborg, Electron. Lett. 26, 609 (1990).
[CrossRef]

B. Tromborg and J. Mørk, IEEE Photon. Technol. Lett. 2, 549 (1990).
[CrossRef]

E. Ott, C. Grebogi, and J. A. Yorke, Phys. Rev. Lett. 64, 1196 (1990).
[CrossRef] [PubMed]

1988 (1)

J. Mørk, B. Tromborg, and P. L. Christiansen, IEEE J. Quantum Electron. 24, 123 (1988).
[CrossRef]

1987 (1)

1985 (1)

D. Lenstra, B. H. Verbeek, and A. J. den Boef, IEEE J. Quantum Electron. QE-21, 674 (1985).
[CrossRef]

1980 (1)

R. Lang and K. Kobayashi, IEEE J. Quantum Electron. QE-16, 347 (1980).
[CrossRef]

Christiansen, P. L.

J. Mørk, B. Tromborg, and P. L. Christiansen, IEEE J. Quantum Electron. 24, 123 (1988).
[CrossRef]

Dahmani, B.

den Boef, A. J.

D. Lenstra, B. H. Verbeek, and A. J. den Boef, IEEE J. Quantum Electron. QE-21, 674 (1985).
[CrossRef]

Drullinger, R.

Erneux, T.

A. M. Levine, G. H. M. van Tartwijk, D. Lenstra, and T. Erneux, Phys. Rev. A 52, R3436 (1995).
[CrossRef]

T. Erneux, G. H. M. van Tartwijk, D. Lenstra, and A. M. Levine, Phys. Rev. A. (to be published).

Gills, Z.

R. Roy, Z. Gills, and K. Scott Thornburg, Opt. Photon. News 5(5), 8 (1994).
[CrossRef]

Grebogi, C.

E. Ott, C. Grebogi, and J. A. Yorke, Phys. Rev. Lett. 64, 1196 (1990).
[CrossRef] [PubMed]

Hollberg, L.

Kobayashi, K.

R. Lang and K. Kobayashi, IEEE J. Quantum Electron. QE-16, 347 (1980).
[CrossRef]

Lang, R.

R. Lang and K. Kobayashi, IEEE J. Quantum Electron. QE-16, 347 (1980).
[CrossRef]

Lenstra, D.

A. M. Levine, G. H. M. van Tartwijk, D. Lenstra, and T. Erneux, Phys. Rev. A 52, R3436 (1995).
[CrossRef]

D. Lenstra, Opt. Commun. 81, 209 (1991).
[CrossRef]

D. Lenstra, B. H. Verbeek, and A. J. den Boef, IEEE J. Quantum Electron. QE-21, 674 (1985).
[CrossRef]

T. Erneux, G. H. M. van Tartwijk, D. Lenstra, and A. M. Levine, Phys. Rev. A. (to be published).

C. R. Mirasso, M. Mulder, H. J. W. Spoelder, and D. Lenstra, Comput. Phys. (to be published).

Levine, A. M.

A. M. Levine, G. H. M. van Tartwijk, D. Lenstra, and T. Erneux, Phys. Rev. A 52, R3436 (1995).
[CrossRef]

T. Erneux, G. H. M. van Tartwijk, D. Lenstra, and A. M. Levine, Phys. Rev. A. (to be published).

Mirasso, C. R.

C. R. Mirasso, M. Mulder, H. J. W. Spoelder, and D. Lenstra, Comput. Phys. (to be published).

Mørk, J.

J. Mørk, S. Semkow, and B. Tromborg, Electron. Lett. 26, 609 (1990).
[CrossRef]

B. Tromborg and J. Mørk, IEEE Photon. Technol. Lett. 2, 549 (1990).
[CrossRef]

J. Mørk, B. Tromborg, and P. L. Christiansen, IEEE J. Quantum Electron. 24, 123 (1988).
[CrossRef]

Mulder, M.

C. R. Mirasso, M. Mulder, H. J. W. Spoelder, and D. Lenstra, Comput. Phys. (to be published).

Ott, E.

E. Ott, C. Grebogi, and J. A. Yorke, Phys. Rev. Lett. 64, 1196 (1990).
[CrossRef] [PubMed]

Petermann, K.

K. Petermann, Laser Diode Modulation and Noise (Kluwer, Dordrecht, The Netherlands, 1988).
[CrossRef]

Roy, R.

R. Roy, Z. Gills, and K. Scott Thornburg, Opt. Photon. News 5(5), 8 (1994).
[CrossRef]

Sano, T.

T. Sano, Phys. Rev. A 50, 2719 (1994).
[CrossRef] [PubMed]

Scott Thornburg, K.

R. Roy, Z. Gills, and K. Scott Thornburg, Opt. Photon. News 5(5), 8 (1994).
[CrossRef]

Semkow, S.

J. Mørk, S. Semkow, and B. Tromborg, Electron. Lett. 26, 609 (1990).
[CrossRef]

Spoelder, H. J. W.

C. R. Mirasso, M. Mulder, H. J. W. Spoelder, and D. Lenstra, Comput. Phys. (to be published).

Tromborg, B.

J. Mørk, S. Semkow, and B. Tromborg, Electron. Lett. 26, 609 (1990).
[CrossRef]

B. Tromborg and J. Mørk, IEEE Photon. Technol. Lett. 2, 549 (1990).
[CrossRef]

J. Mørk, B. Tromborg, and P. L. Christiansen, IEEE J. Quantum Electron. 24, 123 (1988).
[CrossRef]

van Tartwijk, G. H. M.

A. M. Levine, G. H. M. van Tartwijk, D. Lenstra, and T. Erneux, Phys. Rev. A 52, R3436 (1995).
[CrossRef]

T. Erneux, G. H. M. van Tartwijk, D. Lenstra, and A. M. Levine, Phys. Rev. A. (to be published).

Verbeek, B. H.

D. Lenstra, B. H. Verbeek, and A. J. den Boef, IEEE J. Quantum Electron. QE-21, 674 (1985).
[CrossRef]

Yorke, J. A.

E. Ott, C. Grebogi, and J. A. Yorke, Phys. Rev. Lett. 64, 1196 (1990).
[CrossRef] [PubMed]

Electron. Lett. (1)

J. Mørk, S. Semkow, and B. Tromborg, Electron. Lett. 26, 609 (1990).
[CrossRef]

IEEE J. Quantum Electron. (3)

R. Lang and K. Kobayashi, IEEE J. Quantum Electron. QE-16, 347 (1980).
[CrossRef]

D. Lenstra, B. H. Verbeek, and A. J. den Boef, IEEE J. Quantum Electron. QE-21, 674 (1985).
[CrossRef]

J. Mørk, B. Tromborg, and P. L. Christiansen, IEEE J. Quantum Electron. 24, 123 (1988).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

B. Tromborg and J. Mørk, IEEE Photon. Technol. Lett. 2, 549 (1990).
[CrossRef]

Opt. Commun. (1)

D. Lenstra, Opt. Commun. 81, 209 (1991).
[CrossRef]

Opt. Lett. (1)

Opt. Photon. News (1)

R. Roy, Z. Gills, and K. Scott Thornburg, Opt. Photon. News 5(5), 8 (1994).
[CrossRef]

Phys. Rev. A (2)

A. M. Levine, G. H. M. van Tartwijk, D. Lenstra, and T. Erneux, Phys. Rev. A 52, R3436 (1995).
[CrossRef]

T. Sano, Phys. Rev. A 50, 2719 (1994).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

E. Ott, C. Grebogi, and J. A. Yorke, Phys. Rev. Lett. 64, 1196 (1990).
[CrossRef] [PubMed]

Other (3)

T. Erneux, G. H. M. van Tartwijk, D. Lenstra, and A. M. Levine, Phys. Rev. A. (to be published).

K. Petermann, Laser Diode Modulation and Noise (Kluwer, Dordrecht, The Netherlands, 1988).
[CrossRef]

C. R. Mirasso, M. Mulder, H. J. W. Spoelder, and D. Lenstra, Comput. Phys. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Qualitative picture of the potential for two different values of γ and ω0τ. The filled circle on each curve represents the position of the system in the maximum gain mode. Parameters are α=5.1, τ=2.0. Left: γ=1.0 ns-1, ω0τ=10.2; right: γ=2.0 ns-1, ω0τ=20.4.

Fig. 2
Fig. 2

Numerical simulation of the time evolution of the output power normalized to the output power without feedback for a rate of change of γ of 0.02 ns-2. The feedback parameters are τ0=10 ns, γf=35 ns-1, ω0τf-τ0=-1785, injection current J=75 mA (threshold current of 25 mA), and linewidth enhancement factor of 5.1. The output power of the MGM is indicated by the triangle, top left.

Tables (1)

Tables Icon

Table 1 Definitions and Values of the Different Parameters Appearing in the Model

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E·t=121+iαξntEt+γEt-τ×exp-iω0τ+FEt,
n·t=p-1Jth-ntT1-Γ0+ξntPt+FNt,
dηdt=-1τddηU,
U=η2-2C cosω0τ+arctan α+η.
dγdt<γ·max=2ατ22kMGM+1π-arccos1C-ω0τ-arctan α+C2-1.

Metrics