Abstract

The technique of frequency-resolved optical gating is used to characterize the intensity and the phase of picosecond pulses after propagation through 700 m of fiber at close to the zero-dispersion wavelength. Using the frequency-resolved optical gating technique, we directly measure the severe temporal distortion resulting from the interplay between self-phase modulation and higher-order dispersion in this regime. The measured intensity and phase of the pulses after propagation are found to be in good agreement with the predictions of numerical simulations with the nonlinear Schrödinger equation.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif., 1995).
  2. G. P. Agrawal and M. J. Potasek, Phys. Rev. A 33, 1765 (1986); G. R. Boyer and X. F. Carlotti, Opt. Commun. 60, 18 (1986); P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, Opt. Lett. 11, 464 (1986); P. K. A. Wai, C. R. Menyuk, H. H. Chen, and Y. C. Lee, Opt. Lett. 12, 628 (1987).
    [CrossRef] [PubMed]
  3. M. Stern, J. P. Heritage, W. T. Anderson, and J. Kilmer, J. Lightwave. Technol. 10, 1777 (1992); V. P. Yanovsky and F. W. Wise, Opt. Lett. 19, 1547 (1994).
    [CrossRef] [PubMed]
  4. P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, IEEE J. Quantum. Electron QE-23, 1938 (1987); A. S. Gouveia-Neto, M. E. Faldon, and J. R. Taylor, Opt. Lett. 13, 770 (1988).
    [CrossRef] [PubMed]
  5. K. Inoue, J. Lightwave. Technol. 10, 1553 (1992).
    [CrossRef]
  6. J. Schütz, W. Hodel, and H. P. Weber, Opt. Commun. 95, 357 (1993).
  7. R. Trebino and D. J. Kane, J. Opt. Soc. Am. A 10, 1101 (1993); J. Paye, IEEE J. Quantum. Electron. 30, 2693 (1994).
  8. B. Kohler, V. L. Yakovlev, K. R. Wilson, J. Squier, K. DeLong, and R. Trebino, Opt. Lett. 20, 483 (1995); G. Taft, A. Rundquist, M. M. Murnane, H. C. Kapteyn, K. W. Delong, R. Trebino, and I. P. Christov, Opt. Lett. 20, 743 (1995).
    [PubMed]
  9. W. Margulis, K. Roddwit, and J. R. Taylor, Electron. Lett. 31, 645 (1995).
  10. K. W. DeLong, R. Trebino, J. Hunter, and W. E. White, J. Opt. Soc. Am. B 11, 2206 (1994).
  11. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, J. Opt. Soc. Am. B 6, 1159 (1989); P. D. Drummond and A. D. Hardman, Europhys. Lett. 21, 279 (1993).

1995 (2)

1994 (1)

1993 (2)

1992 (2)

M. Stern, J. P. Heritage, W. T. Anderson, and J. Kilmer, J. Lightwave. Technol. 10, 1777 (1992); V. P. Yanovsky and F. W. Wise, Opt. Lett. 19, 1547 (1994).
[CrossRef] [PubMed]

K. Inoue, J. Lightwave. Technol. 10, 1553 (1992).
[CrossRef]

1989 (1)

1987 (1)

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, IEEE J. Quantum. Electron QE-23, 1938 (1987); A. S. Gouveia-Neto, M. E. Faldon, and J. R. Taylor, Opt. Lett. 13, 770 (1988).
[CrossRef] [PubMed]

1986 (1)

G. P. Agrawal and M. J. Potasek, Phys. Rev. A 33, 1765 (1986); G. R. Boyer and X. F. Carlotti, Opt. Commun. 60, 18 (1986); P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, Opt. Lett. 11, 464 (1986); P. K. A. Wai, C. R. Menyuk, H. H. Chen, and Y. C. Lee, Opt. Lett. 12, 628 (1987).
[CrossRef] [PubMed]

Agrawal, G. P.

G. P. Agrawal and M. J. Potasek, Phys. Rev. A 33, 1765 (1986); G. R. Boyer and X. F. Carlotti, Opt. Commun. 60, 18 (1986); P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, Opt. Lett. 11, 464 (1986); P. K. A. Wai, C. R. Menyuk, H. H. Chen, and Y. C. Lee, Opt. Lett. 12, 628 (1987).
[CrossRef] [PubMed]

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif., 1995).

Anderson, W. T.

M. Stern, J. P. Heritage, W. T. Anderson, and J. Kilmer, J. Lightwave. Technol. 10, 1777 (1992); V. P. Yanovsky and F. W. Wise, Opt. Lett. 19, 1547 (1994).
[CrossRef] [PubMed]

Beaud, P.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, IEEE J. Quantum. Electron QE-23, 1938 (1987); A. S. Gouveia-Neto, M. E. Faldon, and J. R. Taylor, Opt. Lett. 13, 770 (1988).
[CrossRef] [PubMed]

DeLong, K.

DeLong, K. W.

Gordon, J. P.

Haus, H. A.

Heritage, J. P.

M. Stern, J. P. Heritage, W. T. Anderson, and J. Kilmer, J. Lightwave. Technol. 10, 1777 (1992); V. P. Yanovsky and F. W. Wise, Opt. Lett. 19, 1547 (1994).
[CrossRef] [PubMed]

Hodel, W.

J. Schütz, W. Hodel, and H. P. Weber, Opt. Commun. 95, 357 (1993).

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, IEEE J. Quantum. Electron QE-23, 1938 (1987); A. S. Gouveia-Neto, M. E. Faldon, and J. R. Taylor, Opt. Lett. 13, 770 (1988).
[CrossRef] [PubMed]

Hunter, J.

Inoue, K.

K. Inoue, J. Lightwave. Technol. 10, 1553 (1992).
[CrossRef]

Kane, D. J.

Kilmer, J.

M. Stern, J. P. Heritage, W. T. Anderson, and J. Kilmer, J. Lightwave. Technol. 10, 1777 (1992); V. P. Yanovsky and F. W. Wise, Opt. Lett. 19, 1547 (1994).
[CrossRef] [PubMed]

Kohler, B.

Margulis, W.

W. Margulis, K. Roddwit, and J. R. Taylor, Electron. Lett. 31, 645 (1995).

Potasek, M. J.

G. P. Agrawal and M. J. Potasek, Phys. Rev. A 33, 1765 (1986); G. R. Boyer and X. F. Carlotti, Opt. Commun. 60, 18 (1986); P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, Opt. Lett. 11, 464 (1986); P. K. A. Wai, C. R. Menyuk, H. H. Chen, and Y. C. Lee, Opt. Lett. 12, 628 (1987).
[CrossRef] [PubMed]

Roddwit, K.

W. Margulis, K. Roddwit, and J. R. Taylor, Electron. Lett. 31, 645 (1995).

Schütz, J.

J. Schütz, W. Hodel, and H. P. Weber, Opt. Commun. 95, 357 (1993).

Squier, J.

Stern, M.

M. Stern, J. P. Heritage, W. T. Anderson, and J. Kilmer, J. Lightwave. Technol. 10, 1777 (1992); V. P. Yanovsky and F. W. Wise, Opt. Lett. 19, 1547 (1994).
[CrossRef] [PubMed]

Stolen, R. H.

Taylor, J. R.

W. Margulis, K. Roddwit, and J. R. Taylor, Electron. Lett. 31, 645 (1995).

Tomlinson, W. J.

Trebino, R.

Weber, H. P.

J. Schütz, W. Hodel, and H. P. Weber, Opt. Commun. 95, 357 (1993).

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, IEEE J. Quantum. Electron QE-23, 1938 (1987); A. S. Gouveia-Neto, M. E. Faldon, and J. R. Taylor, Opt. Lett. 13, 770 (1988).
[CrossRef] [PubMed]

White, W. E.

Wilson, K. R.

Yakovlev, V. L.

Zysset, B.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, IEEE J. Quantum. Electron QE-23, 1938 (1987); A. S. Gouveia-Neto, M. E. Faldon, and J. R. Taylor, Opt. Lett. 13, 770 (1988).
[CrossRef] [PubMed]

Electron. Lett. (1)

W. Margulis, K. Roddwit, and J. R. Taylor, Electron. Lett. 31, 645 (1995).

IEEE J. Quantum. Electron (1)

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, IEEE J. Quantum. Electron QE-23, 1938 (1987); A. S. Gouveia-Neto, M. E. Faldon, and J. R. Taylor, Opt. Lett. 13, 770 (1988).
[CrossRef] [PubMed]

J. Lightwave. Technol. (2)

K. Inoue, J. Lightwave. Technol. 10, 1553 (1992).
[CrossRef]

M. Stern, J. P. Heritage, W. T. Anderson, and J. Kilmer, J. Lightwave. Technol. 10, 1777 (1992); V. P. Yanovsky and F. W. Wise, Opt. Lett. 19, 1547 (1994).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

J. Schütz, W. Hodel, and H. P. Weber, Opt. Commun. 95, 357 (1993).

Opt. Lett. (1)

Phys. Rev. A (1)

G. P. Agrawal and M. J. Potasek, Phys. Rev. A 33, 1765 (1986); G. R. Boyer and X. F. Carlotti, Opt. Commun. 60, 18 (1986); P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, Opt. Lett. 11, 464 (1986); P. K. A. Wai, C. R. Menyuk, H. H. Chen, and Y. C. Lee, Opt. Lett. 12, 628 (1987).
[CrossRef] [PubMed]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif., 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Measured FROG trace for the laser pulses used in our experiments. (b) Retrieved intensity (solid curve, left-hand axis) and phase (dashed curve, right-hand axis) for these data. (c) and (d) compare the measured autocorrelation and spectrum (solid curves), respectively, with those calculated from the retrieved intensity and phase (circles).

Fig. 2
Fig. 2

(a) Measured spectrum and (b) autocorrelation of pulses after propagation through 700 m of DSF. (c), (d) Corresponding results, respectively, from numerical simulations of the NLSE. (e), (f) Results from the intensity and the phase retrieved from experimental FROG data.

Fig. 3
Fig. 3

(a) Measured FROG trace of pulses after propagation through 700 m of DSF. (b) Retrieved intensity (solid curve, left-hand axis) and phase (dashed curve, right-hand axis) for these FROG data. (c), (d) Corresponding results, respectively, from numerical simulations.

Fig. 4
Fig. 4

Modulated autocorrelation function near zero delay from direct experimental measurements (circles) and from the pulse retrieved from the FROG data (solid curve). The autocorrelation shown from the retrieved FROG data is expanded onto a 25-fs resolution grid.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

δAδz=-iβ22δ2AδT2+β36δ3AδT3+iγA2A,

Metrics