Abstract

An aluminum wire-grid polarizer whose period is 0.39  µm has been fabricated on a quartz substrate by electron-beam direct-writing lithography and the lift-off method. By using the s-polarization resonance effect and optimizing structural parameters, characteristics such as a loss of less than 20% and an extinction ratio larger than 1000 have been experimentally obtained at the 0.8-µm-wavelength band. Theoretical analysis is performed and found to be consistent with the experimental results.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Auton, Appl. Opt. 31, 1023 (1967).
    [CrossRef]
  2. For example, see M. Koeda and M. Kawata, Shimazu Hyoron 48, 393 (1992). (in Japanese)
  3. B. Stenkamp, M. Abraham, W. Ehrfeld, E. Knapek, M. Hintermaier, M. T. Gale, and R. Morf, Proc. SPIE 2213, 288 (1994).
    [CrossRef]
  4. H. Lochbihler and R. Depine, J. Modern Opt. 40, 1273 (1993).
  5. H. Lochbihler, E. Polnau, and P. Predehl, Appl. Opt. 34, 5725 (1995).
    [PubMed]
  6. H. Lochbihler, J. Mod. Opt. 43, 1867 (1996).
    [CrossRef]
  7. M. Neviere, in Electromagnetic Theory and Gratings, R. Petit, ed. (Springer-Verlag, Berlin, 1980), Chap. 5.
  8. D. Maystre, in Electromagnetic Surface Modes, A. D. Boarman, ed. (Wiley, New York, 1982), Chap. 17.
  9. T. K. Gaylord and M. G. Moharam, Proc. IEEE 73, 894 (1985).

1996 (1)

H. Lochbihler, J. Mod. Opt. 43, 1867 (1996).
[CrossRef]

1995 (1)

1994 (1)

B. Stenkamp, M. Abraham, W. Ehrfeld, E. Knapek, M. Hintermaier, M. T. Gale, and R. Morf, Proc. SPIE 2213, 288 (1994).
[CrossRef]

1993 (1)

H. Lochbihler and R. Depine, J. Modern Opt. 40, 1273 (1993).

1992 (1)

For example, see M. Koeda and M. Kawata, Shimazu Hyoron 48, 393 (1992). (in Japanese)

1985 (1)

T. K. Gaylord and M. G. Moharam, Proc. IEEE 73, 894 (1985).

1967 (1)

J. P. Auton, Appl. Opt. 31, 1023 (1967).
[CrossRef]

Abraham, M.

B. Stenkamp, M. Abraham, W. Ehrfeld, E. Knapek, M. Hintermaier, M. T. Gale, and R. Morf, Proc. SPIE 2213, 288 (1994).
[CrossRef]

Auton, J. P.

J. P. Auton, Appl. Opt. 31, 1023 (1967).
[CrossRef]

Depine, R.

H. Lochbihler and R. Depine, J. Modern Opt. 40, 1273 (1993).

Ehrfeld, W.

B. Stenkamp, M. Abraham, W. Ehrfeld, E. Knapek, M. Hintermaier, M. T. Gale, and R. Morf, Proc. SPIE 2213, 288 (1994).
[CrossRef]

Gale, M. T.

B. Stenkamp, M. Abraham, W. Ehrfeld, E. Knapek, M. Hintermaier, M. T. Gale, and R. Morf, Proc. SPIE 2213, 288 (1994).
[CrossRef]

Gaylord, T. K.

T. K. Gaylord and M. G. Moharam, Proc. IEEE 73, 894 (1985).

Hintermaier, M.

B. Stenkamp, M. Abraham, W. Ehrfeld, E. Knapek, M. Hintermaier, M. T. Gale, and R. Morf, Proc. SPIE 2213, 288 (1994).
[CrossRef]

Kawata, M.

For example, see M. Koeda and M. Kawata, Shimazu Hyoron 48, 393 (1992). (in Japanese)

Knapek, E.

B. Stenkamp, M. Abraham, W. Ehrfeld, E. Knapek, M. Hintermaier, M. T. Gale, and R. Morf, Proc. SPIE 2213, 288 (1994).
[CrossRef]

Koeda, M.

For example, see M. Koeda and M. Kawata, Shimazu Hyoron 48, 393 (1992). (in Japanese)

Lochbihler, H.

H. Lochbihler, J. Mod. Opt. 43, 1867 (1996).
[CrossRef]

H. Lochbihler, E. Polnau, and P. Predehl, Appl. Opt. 34, 5725 (1995).
[PubMed]

H. Lochbihler and R. Depine, J. Modern Opt. 40, 1273 (1993).

Maystre, D.

D. Maystre, in Electromagnetic Surface Modes, A. D. Boarman, ed. (Wiley, New York, 1982), Chap. 17.

Moharam, M. G.

T. K. Gaylord and M. G. Moharam, Proc. IEEE 73, 894 (1985).

Morf, R.

B. Stenkamp, M. Abraham, W. Ehrfeld, E. Knapek, M. Hintermaier, M. T. Gale, and R. Morf, Proc. SPIE 2213, 288 (1994).
[CrossRef]

Neviere, M.

M. Neviere, in Electromagnetic Theory and Gratings, R. Petit, ed. (Springer-Verlag, Berlin, 1980), Chap. 5.

Polnau, E.

Predehl, P.

Stenkamp, B.

B. Stenkamp, M. Abraham, W. Ehrfeld, E. Knapek, M. Hintermaier, M. T. Gale, and R. Morf, Proc. SPIE 2213, 288 (1994).
[CrossRef]

Appl. Opt. (2)

J. Mod. Opt. (1)

H. Lochbihler, J. Mod. Opt. 43, 1867 (1996).
[CrossRef]

J. Modern Opt. (1)

H. Lochbihler and R. Depine, J. Modern Opt. 40, 1273 (1993).

Proc. IEEE (1)

T. K. Gaylord and M. G. Moharam, Proc. IEEE 73, 894 (1985).

Proc. SPIE (1)

B. Stenkamp, M. Abraham, W. Ehrfeld, E. Knapek, M. Hintermaier, M. T. Gale, and R. Morf, Proc. SPIE 2213, 288 (1994).
[CrossRef]

Shimazu Hyoron (1)

For example, see M. Koeda and M. Kawata, Shimazu Hyoron 48, 393 (1992). (in Japanese)

Other (2)

M. Neviere, in Electromagnetic Theory and Gratings, R. Petit, ed. (Springer-Verlag, Berlin, 1980), Chap. 5.

D. Maystre, in Electromagnetic Surface Modes, A. D. Boarman, ed. (Wiley, New York, 1982), Chap. 17.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Scanning electron micrograph of an aluminum wire grid fabricated by electron-beam direct-writing lithography and the lift-off method.

Fig. 2
Fig. 2

(a) Transmittance of s polarization (Ts) and the extinction ratio (Ts/Tp) as a function of the position number obtained for the aluminum thickness of 286.3  nm. (b) Relation between Ts and Ts/Tp obtained for aluminum thicknesses of 286.3 and 156.3  nm.

Fig. 3
Fig. 3

Contour plot of (a) the transmittance of s polarization (Ts) and (b) the extinction ratio (Ts/Tp) on the aluminum thickness–position number plane.

Fig. 4
Fig. 4

Theoretical calculation of contour plots of the transmittance of s polarization (Ts) and the extinction ratio (Ts/Tp) on the aluminum thickness–width plane based on a rigorous coupled-wave analysis.

Fig. 5
Fig. 5

Theoretical calculation of the transmittance of s-polarization (Ts) and the extinction ratio (Ts/Tp) as a function of the wavelength ranging from 700 to 850  nm. Aluminum thickness is (a) 240  nm and (b) 230  nm; aluminum width is (a) 150  nm and (b) 250  nm.

Metrics