Abstract

The temporal characteristics of two different narrow-band optical filters at 532  nm are reported. Both filters operate on the 4P1/28S1/2 atomic transition of potassium vapor, where the 4P1/2 state is excited by a 770-nm, 10-ns laser pulse. The filters operate on the principle of circular birefringence induced by either the Faraday effect or two-photon transition, which is confirmed by experiments. The characteristic decay times of the filters are 5 and 0.015µs, which is significant for the design of optical gating and signal processing with matched filters for ocean lidar.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. I. Billmers, S. K. Gayen, M. F. Squicciarini, V. M. Contarino, W. J. Scharpf, and D. M. Allocca, Opt. Lett. 20, 106 (1995).
    [PubMed]
  2. S. K. Gayen, R. I. Billmers, V. M. Contarino, M. F. Squicciarini, W. J. Scharpf, G. Yang, P. R. Herczfeld, and D. M. Alloca, Opt. Lett. 20, 1427 (1995).
    [PubMed]
  3. D. J. Dick and T. M. Shay, Opt. Lett. 16, 867 (1991).
    [PubMed]
  4. P. F. Liao and G. C. Bjorklund, Phys. Rev. A 15, 2009 (1977).
  5. K. A. Suominen, S. Stenholm, and B. Stahlberg, J. Opt. Soc. Am. B 8, 1899 (1991).
  6. T. Holstein, Phys. Rev. 72, 1212 (1947).
    [CrossRef]
  7. B. Cagnac, G. Grynberg, and F. Biraben, J. Phys. (Paris) 34, 845 (1973).
    [CrossRef]
  8. D. Grischkosky, Phys. Rev. A 14, 802 (1976).

1995 (2)

1991 (2)

1977 (1)

P. F. Liao and G. C. Bjorklund, Phys. Rev. A 15, 2009 (1977).

1976 (1)

D. Grischkosky, Phys. Rev. A 14, 802 (1976).

1973 (1)

B. Cagnac, G. Grynberg, and F. Biraben, J. Phys. (Paris) 34, 845 (1973).
[CrossRef]

1947 (1)

T. Holstein, Phys. Rev. 72, 1212 (1947).
[CrossRef]

Alloca, D. M.

Allocca, D. M.

Billmers, R. I.

Biraben, F.

B. Cagnac, G. Grynberg, and F. Biraben, J. Phys. (Paris) 34, 845 (1973).
[CrossRef]

Bjorklund, G. C.

P. F. Liao and G. C. Bjorklund, Phys. Rev. A 15, 2009 (1977).

Cagnac, B.

B. Cagnac, G. Grynberg, and F. Biraben, J. Phys. (Paris) 34, 845 (1973).
[CrossRef]

Contarino, V. M.

Dick, D. J.

Gayen, S. K.

Grischkosky, D.

D. Grischkosky, Phys. Rev. A 14, 802 (1976).

Grynberg, G.

B. Cagnac, G. Grynberg, and F. Biraben, J. Phys. (Paris) 34, 845 (1973).
[CrossRef]

Herczfeld, P. R.

Holstein, T.

T. Holstein, Phys. Rev. 72, 1212 (1947).
[CrossRef]

Liao, P. F.

P. F. Liao and G. C. Bjorklund, Phys. Rev. A 15, 2009 (1977).

Scharpf, W. J.

Shay, T. M.

Squicciarini, M. F.

Stahlberg, B.

Stenholm, S.

Suominen, K. A.

Yang, G.

J. Opt. Soc. Am. B (1)

J. Phys. (Paris) (1)

B. Cagnac, G. Grynberg, and F. Biraben, J. Phys. (Paris) 34, 845 (1973).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. (1)

T. Holstein, Phys. Rev. 72, 1212 (1947).
[CrossRef]

Phys. Rev. A (2)

D. Grischkosky, Phys. Rev. A 14, 802 (1976).

P. F. Liao and G. C. Bjorklund, Phys. Rev. A 15, 2009 (1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup for the IDEAL filter transmission measurement. BS, beam splitter; BC, beam combiner; P1, P2, polarizers; PD1, PD2, photodetectors; DSA, digital signal analyzer; F, green filter; ND, neutral-density filter.

Fig. 2
Fig. 2

Temporal response of the ESFADOF. The pump has a peak power of 0.1 MW/cm2, the vapor temperature is 200 °C, corresponding to 1014/cm3 vapor density, and the applied magnetic field is 200  G.

Fig. 3
Fig. 3

Temporal response of the IDEAL filter and the pump laser. The pump is normalized to its peak power of 0.1 MW/cm2. The vapor density is 1014/cm3.

Fig. 4
Fig. 4

Time-resolved RCP (top) and LCP (bottom) probe absorption spectra when a LCP pump is used. The x-axis corresponds to the probe detuning (ν1ν32) from the resonant frequency ν32, the y-axis is the time dependence, and the z-axis is the probe absorption. The pump is turned on at t=0. The pump power is the same as in Fig.  3.

Fig. 5
Fig. 5

Temporal responses of the RCP and LCP probe absorption extracted from Fig.  4 when the probe is detuned by 2.5  GHz (top) and in resonance (bottom) from the resonant transition.

Metrics