Abstract

Surface-relief gratings were directly fabricated onto a glass surface by UV–visible laser irradiation. The glass surface was pretreated by molten salt, including Ag ions. Periodic intensity modulation of the laser light was conducted with a phase mask or by an interference technique. A pattern generated by intensity modulation was precisely transcribed onto the glass surface and a surface-relief grating was formed. The period and depth of the grating were 0.5 to 10  µm and less than 0.8  µm, respectively. The cross-sectional profile of the grating was sinusoidal or triangular, with very smooth surface morphology.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Braren and R. Srinivasen, J. Vac. Sci. Technol. B 6, 532 (1988).
    [CrossRef]
  2. R. Nowak, S. Metev, G. Sepold, and K. Grosskof, Glastech. Ber. 66, 227 (1993).
  3. S. R. Jackson, W. J. Metheringham, and P. E. Dyer, Appl. Surf. Sci. 86, 223 (1995).
    [CrossRef]
  4. T. Koyama and K. Tsunetomo, “Laser micro-machining of silicate glasses including silver ions using a pulsed laser,” Jpn. J. Appl. Phys. (to be published).
  5. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, Appl. Phys. Lett. 62, 1035 (1993).
    [CrossRef]
  6. B. Malo, D. C. Johnson, G. Bilodeau, J. Albert, and K. O. Hill, Opt. Lett. 18, 1277 (1993).
    [CrossRef] [PubMed]
  7. J. Nishii and H. Yamanaka, Opt. Lett. 21, 1360 (1996).
    [CrossRef] [PubMed]

1996 (1)

1995 (1)

S. R. Jackson, W. J. Metheringham, and P. E. Dyer, Appl. Surf. Sci. 86, 223 (1995).
[CrossRef]

1993 (3)

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, Appl. Phys. Lett. 62, 1035 (1993).
[CrossRef]

B. Malo, D. C. Johnson, G. Bilodeau, J. Albert, and K. O. Hill, Opt. Lett. 18, 1277 (1993).
[CrossRef] [PubMed]

R. Nowak, S. Metev, G. Sepold, and K. Grosskof, Glastech. Ber. 66, 227 (1993).

1988 (1)

B. Braren and R. Srinivasen, J. Vac. Sci. Technol. B 6, 532 (1988).
[CrossRef]

Albert, J.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, Appl. Phys. Lett. 62, 1035 (1993).
[CrossRef]

B. Malo, D. C. Johnson, G. Bilodeau, J. Albert, and K. O. Hill, Opt. Lett. 18, 1277 (1993).
[CrossRef] [PubMed]

Bilodeau, F.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, Appl. Phys. Lett. 62, 1035 (1993).
[CrossRef]

Bilodeau, G.

Braren, B.

B. Braren and R. Srinivasen, J. Vac. Sci. Technol. B 6, 532 (1988).
[CrossRef]

Dyer, P. E.

S. R. Jackson, W. J. Metheringham, and P. E. Dyer, Appl. Surf. Sci. 86, 223 (1995).
[CrossRef]

Grosskof, K.

R. Nowak, S. Metev, G. Sepold, and K. Grosskof, Glastech. Ber. 66, 227 (1993).

Hill, K. O.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, Appl. Phys. Lett. 62, 1035 (1993).
[CrossRef]

B. Malo, D. C. Johnson, G. Bilodeau, J. Albert, and K. O. Hill, Opt. Lett. 18, 1277 (1993).
[CrossRef] [PubMed]

Jackson, S. R.

S. R. Jackson, W. J. Metheringham, and P. E. Dyer, Appl. Surf. Sci. 86, 223 (1995).
[CrossRef]

Johnson, D. C.

B. Malo, D. C. Johnson, G. Bilodeau, J. Albert, and K. O. Hill, Opt. Lett. 18, 1277 (1993).
[CrossRef] [PubMed]

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, Appl. Phys. Lett. 62, 1035 (1993).
[CrossRef]

Koyama, T.

T. Koyama and K. Tsunetomo, “Laser micro-machining of silicate glasses including silver ions using a pulsed laser,” Jpn. J. Appl. Phys. (to be published).

Malo, B.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, Appl. Phys. Lett. 62, 1035 (1993).
[CrossRef]

B. Malo, D. C. Johnson, G. Bilodeau, J. Albert, and K. O. Hill, Opt. Lett. 18, 1277 (1993).
[CrossRef] [PubMed]

Metev, S.

R. Nowak, S. Metev, G. Sepold, and K. Grosskof, Glastech. Ber. 66, 227 (1993).

Metheringham, W. J.

S. R. Jackson, W. J. Metheringham, and P. E. Dyer, Appl. Surf. Sci. 86, 223 (1995).
[CrossRef]

Nishii, J.

Nowak, R.

R. Nowak, S. Metev, G. Sepold, and K. Grosskof, Glastech. Ber. 66, 227 (1993).

Sepold, G.

R. Nowak, S. Metev, G. Sepold, and K. Grosskof, Glastech. Ber. 66, 227 (1993).

Srinivasen, R.

B. Braren and R. Srinivasen, J. Vac. Sci. Technol. B 6, 532 (1988).
[CrossRef]

Tsunetomo, K.

T. Koyama and K. Tsunetomo, “Laser micro-machining of silicate glasses including silver ions using a pulsed laser,” Jpn. J. Appl. Phys. (to be published).

Yamanaka, H.

Appl. Phys. Lett. (1)

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, Appl. Phys. Lett. 62, 1035 (1993).
[CrossRef]

Appl. Surf. Sci. (1)

S. R. Jackson, W. J. Metheringham, and P. E. Dyer, Appl. Surf. Sci. 86, 223 (1995).
[CrossRef]

Glastech. Ber. (1)

R. Nowak, S. Metev, G. Sepold, and K. Grosskof, Glastech. Ber. 66, 227 (1993).

J. Vac. Sci. Technol. B (1)

B. Braren and R. Srinivasen, J. Vac. Sci. Technol. B 6, 532 (1988).
[CrossRef]

Opt. Lett. (2)

Other (1)

T. Koyama and K. Tsunetomo, “Laser micro-machining of silicate glasses including silver ions using a pulsed laser,” Jpn. J. Appl. Phys. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic drawing of the interference of beams diffracted by a phase mask. The 0-order beam interferes with the ±1st-order diffracted beams, causing periodic light-intensity modulation at the glass surface. Other high-order diffraction beams are neglected in the figure.

Fig. 2
Fig. 2

Photographs obtained by a scanning electron microscope for a surface-relief grating fabricated by a phase mask: (a) top view of the grating, (b) cross-sectional image of the grating. The laser wavelength was 355  nm, and the pulse energy was 4  J/cm2. The period of the phase mask used was 1.055  µm.

Fig. 3
Fig. 3

Dependence of grating height on the number of laser pulses for two values of energy density: , 4  J/cm2 pulse; , 3  J/cm2 pulse. The gratings were fabricated by the interference technique with 355-nm laser light. Note that we controlled the energy density by changing the incident-beam angle. Thus the period of the grating is different for each energy density: , 5.4  µm; , 1.4  µm.

Fig. 4
Fig. 4

Cross-sectional profile of a surface-relief grating fabricated by the interference technique. The laser wavelength was 355  nm, the number of pulses was 10, and the incident angle between the two beams was 5°. This profile was measured by atomic force microscopy.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Λ=λ/2sinθ,

Metrics