Abstract

A two-propagation-axis solid-state laser is shown to provide a widely tunable optical microwave source. The spatial separation of the laser eigenstates is shown to enable an étalon to act as a coarse tuner, forcing oscillation in any nonadjacent cavity modes. The frequency difference between opposite helicoidal eigenstates operating in nonadjacent cavity modes can then be tuned continuously. The beat note from such a solid-state laser is shown to vary from dc to 26  GHz, i.e., 30 times the laser free-spectral range, and is limited only by the free-spectral range of the étalon.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Gliese, E. L. Christiensen, and K. E. Stubkjaer, J. Lightwave Technol. 9, 779 (1991).
    [CrossRef]
  2. J. O'Reilly and P. Lane, J. Lightwave Technol. 12, 369 (1994).
    [CrossRef]
  3. D. C. Ni, H. R. Fetterman, and W. Chew, IEEE Trans. Microwave Theory Technol. 38, 608 (1990).
    [CrossRef]
  4. K. Y. Lau, Appl. Phys. Lett. 52, 2214 (1988).
    [CrossRef]
  5. R. C. Steele, Electron. Lett. 19, 69 (1983)K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, and J. F. Weller, Electron. Lett. 25, 1242 (1989).
    [CrossRef]
  6. C. R. Lima, D. Wake, and P. A. Davies, Electron. Lett. 31, 364 (1995).
    [CrossRef]
  7. X. S. Yao and L. Maleki, Opt. Lett. 21, 483 (1996).
    [CrossRef] [PubMed]
  8. B. Zhou, T. J. Kane, G. Dixon, and R. L. Byer, Opt. Lett. 10, 62 (1985).
    [CrossRef] [PubMed]
  9. F. Bretenaker and A. Le Floch, IEEE J. Quantum Electron. 26, 1451 (1990).
    [CrossRef]
  10. V. Evtuhov and A. E. Siegman, Appl. Opt. 4, 142 (1965); A. E. Siegman, Opt. Commun. 24, 365 (1978).
    [CrossRef]
  11. A. Kastler, C. R. Acad. Sci. B 271, 999 (1970).
  12. A. Le Floch and G. Stephan, C. R. Acad. Sci. B 277, 265 (1973);A. Le Floch, R. Le Naour, and G. Stephan, Phys. Rev. Lett. 39, 1671 (1977).
    [CrossRef]
  13. P. A. Leilabady and D. L. Sipes, Proceedings of the Second Annual DARPA/Rome Laboratory Symposium on Photonics Systems for Antenna Applications (Defense Advanced Research Projects Agency, Washington, D.C., 1991).
  14. Here we have ommited the possible birefringence of the YAG rod, since it would only add a constant term in the frequency difference.
  15. G. W. Baxter, J. M. Dawes, P. Dekker, and D. S. Knowles, IEEE Photon. Technol. Lett. 7, 1137 (1995).
    [CrossRef]
  16. P. R. Robrish, C. J. Madden, R. L. Van Tuyl, and W. R. Trutna, Hewlett-Packard J. 46, 63 (1995).
  17. K. Wallmeroth, Opt. Lett. 15, 903 (1990).
    [CrossRef] [PubMed]
  18. In this case, a crystal separating the pump source can also be introduced into the cavity. The laser then behaves as an ordinary one-axis laser, with the beams kept degenerate on the mirrors.

1996 (1)

1995 (3)

C. R. Lima, D. Wake, and P. A. Davies, Electron. Lett. 31, 364 (1995).
[CrossRef]

G. W. Baxter, J. M. Dawes, P. Dekker, and D. S. Knowles, IEEE Photon. Technol. Lett. 7, 1137 (1995).
[CrossRef]

P. R. Robrish, C. J. Madden, R. L. Van Tuyl, and W. R. Trutna, Hewlett-Packard J. 46, 63 (1995).

1994 (1)

J. O'Reilly and P. Lane, J. Lightwave Technol. 12, 369 (1994).
[CrossRef]

1991 (1)

U. Gliese, E. L. Christiensen, and K. E. Stubkjaer, J. Lightwave Technol. 9, 779 (1991).
[CrossRef]

1990 (3)

D. C. Ni, H. R. Fetterman, and W. Chew, IEEE Trans. Microwave Theory Technol. 38, 608 (1990).
[CrossRef]

K. Wallmeroth, Opt. Lett. 15, 903 (1990).
[CrossRef] [PubMed]

F. Bretenaker and A. Le Floch, IEEE J. Quantum Electron. 26, 1451 (1990).
[CrossRef]

1988 (1)

K. Y. Lau, Appl. Phys. Lett. 52, 2214 (1988).
[CrossRef]

1985 (1)

1983 (1)

R. C. Steele, Electron. Lett. 19, 69 (1983)K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, and J. F. Weller, Electron. Lett. 25, 1242 (1989).
[CrossRef]

1973 (1)

A. Le Floch and G. Stephan, C. R. Acad. Sci. B 277, 265 (1973);A. Le Floch, R. Le Naour, and G. Stephan, Phys. Rev. Lett. 39, 1671 (1977).
[CrossRef]

1970 (1)

A. Kastler, C. R. Acad. Sci. B 271, 999 (1970).

1965 (1)

Baxter, G. W.

G. W. Baxter, J. M. Dawes, P. Dekker, and D. S. Knowles, IEEE Photon. Technol. Lett. 7, 1137 (1995).
[CrossRef]

Bretenaker, F.

F. Bretenaker and A. Le Floch, IEEE J. Quantum Electron. 26, 1451 (1990).
[CrossRef]

Byer, R. L.

Chew, W.

D. C. Ni, H. R. Fetterman, and W. Chew, IEEE Trans. Microwave Theory Technol. 38, 608 (1990).
[CrossRef]

Christiensen, E. L.

U. Gliese, E. L. Christiensen, and K. E. Stubkjaer, J. Lightwave Technol. 9, 779 (1991).
[CrossRef]

Davies, P. A.

C. R. Lima, D. Wake, and P. A. Davies, Electron. Lett. 31, 364 (1995).
[CrossRef]

Dawes, J. M.

G. W. Baxter, J. M. Dawes, P. Dekker, and D. S. Knowles, IEEE Photon. Technol. Lett. 7, 1137 (1995).
[CrossRef]

Dekker, P.

G. W. Baxter, J. M. Dawes, P. Dekker, and D. S. Knowles, IEEE Photon. Technol. Lett. 7, 1137 (1995).
[CrossRef]

Dixon, G.

Evtuhov, V.

Fetterman, H. R.

D. C. Ni, H. R. Fetterman, and W. Chew, IEEE Trans. Microwave Theory Technol. 38, 608 (1990).
[CrossRef]

Gliese, U.

U. Gliese, E. L. Christiensen, and K. E. Stubkjaer, J. Lightwave Technol. 9, 779 (1991).
[CrossRef]

Kane, T. J.

Kastler, A.

A. Kastler, C. R. Acad. Sci. B 271, 999 (1970).

Knowles, D. S.

G. W. Baxter, J. M. Dawes, P. Dekker, and D. S. Knowles, IEEE Photon. Technol. Lett. 7, 1137 (1995).
[CrossRef]

Lane, P.

J. O'Reilly and P. Lane, J. Lightwave Technol. 12, 369 (1994).
[CrossRef]

Lau, K. Y.

K. Y. Lau, Appl. Phys. Lett. 52, 2214 (1988).
[CrossRef]

Le Floch, A.

F. Bretenaker and A. Le Floch, IEEE J. Quantum Electron. 26, 1451 (1990).
[CrossRef]

A. Le Floch and G. Stephan, C. R. Acad. Sci. B 277, 265 (1973);A. Le Floch, R. Le Naour, and G. Stephan, Phys. Rev. Lett. 39, 1671 (1977).
[CrossRef]

Leilabady, P. A.

P. A. Leilabady and D. L. Sipes, Proceedings of the Second Annual DARPA/Rome Laboratory Symposium on Photonics Systems for Antenna Applications (Defense Advanced Research Projects Agency, Washington, D.C., 1991).

Lima, C. R.

C. R. Lima, D. Wake, and P. A. Davies, Electron. Lett. 31, 364 (1995).
[CrossRef]

Madden, C. J.

P. R. Robrish, C. J. Madden, R. L. Van Tuyl, and W. R. Trutna, Hewlett-Packard J. 46, 63 (1995).

Maleki, L.

Ni, D. C.

D. C. Ni, H. R. Fetterman, and W. Chew, IEEE Trans. Microwave Theory Technol. 38, 608 (1990).
[CrossRef]

O'Reilly, J.

J. O'Reilly and P. Lane, J. Lightwave Technol. 12, 369 (1994).
[CrossRef]

Robrish, P. R.

P. R. Robrish, C. J. Madden, R. L. Van Tuyl, and W. R. Trutna, Hewlett-Packard J. 46, 63 (1995).

Siegman, A. E.

Sipes, D. L.

P. A. Leilabady and D. L. Sipes, Proceedings of the Second Annual DARPA/Rome Laboratory Symposium on Photonics Systems for Antenna Applications (Defense Advanced Research Projects Agency, Washington, D.C., 1991).

Steele, R. C.

R. C. Steele, Electron. Lett. 19, 69 (1983)K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, and J. F. Weller, Electron. Lett. 25, 1242 (1989).
[CrossRef]

Stephan, G.

A. Le Floch and G. Stephan, C. R. Acad. Sci. B 277, 265 (1973);A. Le Floch, R. Le Naour, and G. Stephan, Phys. Rev. Lett. 39, 1671 (1977).
[CrossRef]

Stubkjaer, K. E.

U. Gliese, E. L. Christiensen, and K. E. Stubkjaer, J. Lightwave Technol. 9, 779 (1991).
[CrossRef]

Trutna, W. R.

P. R. Robrish, C. J. Madden, R. L. Van Tuyl, and W. R. Trutna, Hewlett-Packard J. 46, 63 (1995).

Van Tuyl, R. L.

P. R. Robrish, C. J. Madden, R. L. Van Tuyl, and W. R. Trutna, Hewlett-Packard J. 46, 63 (1995).

Wake, D.

C. R. Lima, D. Wake, and P. A. Davies, Electron. Lett. 31, 364 (1995).
[CrossRef]

Wallmeroth, K.

Yao, X. S.

Zhou, B.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. Y. Lau, Appl. Phys. Lett. 52, 2214 (1988).
[CrossRef]

C. R. Acad. Sci. B (2)

A. Kastler, C. R. Acad. Sci. B 271, 999 (1970).

A. Le Floch and G. Stephan, C. R. Acad. Sci. B 277, 265 (1973);A. Le Floch, R. Le Naour, and G. Stephan, Phys. Rev. Lett. 39, 1671 (1977).
[CrossRef]

Electron. Lett. (2)

R. C. Steele, Electron. Lett. 19, 69 (1983)K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, and J. F. Weller, Electron. Lett. 25, 1242 (1989).
[CrossRef]

C. R. Lima, D. Wake, and P. A. Davies, Electron. Lett. 31, 364 (1995).
[CrossRef]

Hewlett-Packard J. (1)

P. R. Robrish, C. J. Madden, R. L. Van Tuyl, and W. R. Trutna, Hewlett-Packard J. 46, 63 (1995).

IEEE J. Quantum Electron. (1)

F. Bretenaker and A. Le Floch, IEEE J. Quantum Electron. 26, 1451 (1990).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

G. W. Baxter, J. M. Dawes, P. Dekker, and D. S. Knowles, IEEE Photon. Technol. Lett. 7, 1137 (1995).
[CrossRef]

IEEE Trans. Microwave Theory Technol. (1)

D. C. Ni, H. R. Fetterman, and W. Chew, IEEE Trans. Microwave Theory Technol. 38, 608 (1990).
[CrossRef]

J. Lightwave Technol. (2)

U. Gliese, E. L. Christiensen, and K. E. Stubkjaer, J. Lightwave Technol. 9, 779 (1991).
[CrossRef]

J. O'Reilly and P. Lane, J. Lightwave Technol. 12, 369 (1994).
[CrossRef]

Opt. Lett. (3)

Other (3)

In this case, a crystal separating the pump source can also be introduced into the cavity. The laser then behaves as an ordinary one-axis laser, with the beams kept degenerate on the mirrors.

P. A. Leilabady and D. L. Sipes, Proceedings of the Second Annual DARPA/Rome Laboratory Symposium on Photonics Systems for Antenna Applications (Defense Advanced Research Projects Agency, Washington, D.C., 1991).

Here we have ommited the possible birefringence of the YAG rod, since it would only add a constant term in the frequency difference.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental arrangement: C1, C2, calcite crystals cut at 45° with respect to their optical axis; L1, L2, quarter-wave plates; M1, plane mirror; M2, concave mirror with radius of curvature 200  mm; A, 1.5-mm-diameter aperture; P, polarizer.

Fig. 2
Fig. 2

Beat signal observed on a spectrum analyzer for different angles of the first quarter-wave plate, L1, when the étalon is adjusted to have p=0 and p=1. From the bottom to the top ρ=22°, 11°, 0°, -11°, -21°, -32°, -42° with p=0, and ρ=36°, 25°, 14°, -3°, -6°, -16° with p=1. Tuning is continuous over all of the observed range. Each trace was obtained with a 1-MHz resolution bandwidth and a 50-ms measurement time.

Fig. 3
Fig. 3

Experimental observation of the laser spectrum (a) through a confocal Fabry–Perot analyzer with a 7.5-GHz free-spectral range, for eight different angle positions of the étalon, p. (b) Observation through a grating spectrometer, with the étalon angle position adjusted for maximum frequency difference.

Fig. 4
Fig. 4

Experimental observation of the linewidth of the beat signal between the two oscillating eigenstates. The resolution bandwidth is 10  kHz, which limits the observed linewidth. The central frequency is 240  MHz. The long-term frequency jitter was measured to be 1  MHz, principally owing to acoustic vibrations and intensity fluctuations of the pump source.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

νo-νe=c2L12-ϕo-ϕeπ-c2L2ρπ+pc2L,

Metrics