Abstract

A two-propagation-axis solid-state laser is shown to provide a widely tunable optical microwave source. The spatial separation of the laser eigenstates is shown to enable an étalon to act as a coarse tuner, forcing oscillation in any nonadjacent cavity modes. The frequency difference between opposite helicoidal eigenstates operating in nonadjacent cavity modes can then be tuned continuously. The beat note from such a solid-state laser is shown to vary from dc to 26 GHz, i.e., 30 times the laser free-spectral range, and is limited only by the free-spectral range of the étalon.

© 1997 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Gliese, E. L. Christiensen, and K. E. Stubkjaer, J. Lightwave Technol. 9, 779 (1991).
  2. J. O’Reilly and P. Lane, J. Lightwave Technol. 12, 369 (1994).
  3. D. C. Ni, H. R. Fetterman, and W. Chew, IEEE Trans. Microwave Theory Technol. 38, 608 (1990).
  4. K. Y. Lau, Appl. Phys. Lett. 52, 2214 (1988).
  5. R. C. Steele, Electron. Lett. 19, 69 (1983) ; K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, and J. F. Weller, Electron. Lett. 25, 1242 (1989).
  6. C. R. Lima, D. Wake, and P. A. Davies, Electron. Lett. 31, 364 (1995).
  7. X. S. Yao and L. Maleki, Opt. Lett. 21, 483 (1996).
  8. B. Zhou, T. J. Kane, G. Dixon, and R. L. Byer, Opt. Lett. 10, 62 (1985).
  9. F. Bretenaker and A. Le Floch, IEEE J. Quantum Electron. 26, 1451 (1990).
  10. V. Evtuhov and A. E. Siegman, Appl. Opt. 4, 142 (1965); A. E. Siegman, Opt. Commun. 24, 365 (1978).
  11. A. Kastler, C. R. Acad. Sci. B 271, 999 (1970).
  12. A. Le Floch G. Stephan, C. R. Acad. Sci. B 277, 265 (1973); A. Le Floch, R. Le Naour, and G. Stephan, Phys. Rev. Lett. 39, 1671 (1977).
  13. P. A. Leilabady and D. L. Sipes, Proceedings of the Second Annual DARPA / Rome Laboratory Symposium on Photonics Systems for Antenna Applications (Defense Advanced Research Projects Agency, Washington, D.C., 1991).
  14. Here we have ommited the possible birefringence of the YAG rod, since it would only add a constant term in the frequency difference.
  15. G. W. Baxter, J. M. Dawes, P. Dekker, and D. S. Knowles, IEEE Photon. Technol. Lett. 7, 1137 (1995).
  16. P. R. Robrish, C. J. Madden, R. L. Van Tuyl, and W. R. Trutna, Jr., Hewlett-Packard J. 46, 63 (1995).
  17. K. Wallmeroth, Opt. Lett. 15, 903 (1990).
  18. In this case, a crystal separating the pump source can also be introduced into the cavity. The laser then behaves as an ordinary one-axis laser, with the beams kept degenerate on the mirrors.

1996

1991

P. A. Leilabady and D. L. Sipes, Proceedings of the Second Annual DARPA / Rome Laboratory Symposium on Photonics Systems for Antenna Applications (Defense Advanced Research Projects Agency, Washington, D.C., 1991).

1990

1988

K. Y. Lau, Appl. Phys. Lett. 52, 2214 (1988).

1985

1973

A. Le Floch G. Stephan, C. R. Acad. Sci. B 277, 265 (1973); A. Le Floch, R. Le Naour, and G. Stephan, Phys. Rev. Lett. 39, 1671 (1977).

1965

Baxter, G. W.

G. W. Baxter, J. M. Dawes, P. Dekker, and D. S. Knowles, IEEE Photon. Technol. Lett. 7, 1137 (1995).

Bretenaker, F.

F. Bretenaker and A. Le Floch, IEEE J. Quantum Electron. 26, 1451 (1990).

Byer, R. L.

Chew, W.

D. C. Ni, H. R. Fetterman, and W. Chew, IEEE Trans. Microwave Theory Technol. 38, 608 (1990).

Christiensen, E. L.

U. Gliese, E. L. Christiensen, and K. E. Stubkjaer, J. Lightwave Technol. 9, 779 (1991).

Dagenais, M.

R. C. Steele, Electron. Lett. 19, 69 (1983) ; K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, and J. F. Weller, Electron. Lett. 25, 1242 (1989).

Davies, P. A.

C. R. Lima, D. Wake, and P. A. Davies, Electron. Lett. 31, 364 (1995).

Dawes, J. M.

G. W. Baxter, J. M. Dawes, P. Dekker, and D. S. Knowles, IEEE Photon. Technol. Lett. 7, 1137 (1995).

Dekker, P.

G. W. Baxter, J. M. Dawes, P. Dekker, and D. S. Knowles, IEEE Photon. Technol. Lett. 7, 1137 (1995).

Dixon, G.

Esman, R. D.

R. C. Steele, Electron. Lett. 19, 69 (1983) ; K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, and J. F. Weller, Electron. Lett. 25, 1242 (1989).

Evtuhov, V.

Fetterman, H. R.

D. C. Ni, H. R. Fetterman, and W. Chew, IEEE Trans. Microwave Theory Technol. 38, 608 (1990).

Gliese, U.

U. Gliese, E. L. Christiensen, and K. E. Stubkjaer, J. Lightwave Technol. 9, 779 (1991).

Goldberg, L.

R. C. Steele, Electron. Lett. 19, 69 (1983) ; K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, and J. F. Weller, Electron. Lett. 25, 1242 (1989).

Kane, T. J.

Kastler, A.

A. Kastler, C. R. Acad. Sci. B 271, 999 (1970).

Knowles, D. S.

G. W. Baxter, J. M. Dawes, P. Dekker, and D. S. Knowles, IEEE Photon. Technol. Lett. 7, 1137 (1995).

Lane, P.

J. O’Reilly and P. Lane, J. Lightwave Technol. 12, 369 (1994).

Lau, K. Y.

K. Y. Lau, Appl. Phys. Lett. 52, 2214 (1988).

Le Floch, A.

A. Le Floch G. Stephan, C. R. Acad. Sci. B 277, 265 (1973); A. Le Floch, R. Le Naour, and G. Stephan, Phys. Rev. Lett. 39, 1671 (1977).

A. Le Floch G. Stephan, C. R. Acad. Sci. B 277, 265 (1973); A. Le Floch, R. Le Naour, and G. Stephan, Phys. Rev. Lett. 39, 1671 (1977).

F. Bretenaker and A. Le Floch, IEEE J. Quantum Electron. 26, 1451 (1990).

Le Naour, R.

A. Le Floch G. Stephan, C. R. Acad. Sci. B 277, 265 (1973); A. Le Floch, R. Le Naour, and G. Stephan, Phys. Rev. Lett. 39, 1671 (1977).

Leilabady, P. A.

P. A. Leilabady and D. L. Sipes, Proceedings of the Second Annual DARPA / Rome Laboratory Symposium on Photonics Systems for Antenna Applications (Defense Advanced Research Projects Agency, Washington, D.C., 1991).

Lima, C. R.

C. R. Lima, D. Wake, and P. A. Davies, Electron. Lett. 31, 364 (1995).

Madden, C. J.

P. R. Robrish, C. J. Madden, R. L. Van Tuyl, and W. R. Trutna, Jr., Hewlett-Packard J. 46, 63 (1995).

Maleki, L.

Ni, D. C.

D. C. Ni, H. R. Fetterman, and W. Chew, IEEE Trans. Microwave Theory Technol. 38, 608 (1990).

O’Reilly, J.

J. O’Reilly and P. Lane, J. Lightwave Technol. 12, 369 (1994).

Robrish, P. R.

P. R. Robrish, C. J. Madden, R. L. Van Tuyl, and W. R. Trutna, Jr., Hewlett-Packard J. 46, 63 (1995).

Siegman, A. E.

Sipes, D. L.

P. A. Leilabady and D. L. Sipes, Proceedings of the Second Annual DARPA / Rome Laboratory Symposium on Photonics Systems for Antenna Applications (Defense Advanced Research Projects Agency, Washington, D.C., 1991).

Steele, R. C.

R. C. Steele, Electron. Lett. 19, 69 (1983) ; K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, and J. F. Weller, Electron. Lett. 25, 1242 (1989).

Stephan, G.

A. Le Floch G. Stephan, C. R. Acad. Sci. B 277, 265 (1973); A. Le Floch, R. Le Naour, and G. Stephan, Phys. Rev. Lett. 39, 1671 (1977).

A. Le Floch G. Stephan, C. R. Acad. Sci. B 277, 265 (1973); A. Le Floch, R. Le Naour, and G. Stephan, Phys. Rev. Lett. 39, 1671 (1977).

Stubkjaer, K. E.

U. Gliese, E. L. Christiensen, and K. E. Stubkjaer, J. Lightwave Technol. 9, 779 (1991).

Trutna, Jr., W. R.

P. R. Robrish, C. J. Madden, R. L. Van Tuyl, and W. R. Trutna, Jr., Hewlett-Packard J. 46, 63 (1995).

Van Tuyl, R. L.

P. R. Robrish, C. J. Madden, R. L. Van Tuyl, and W. R. Trutna, Jr., Hewlett-Packard J. 46, 63 (1995).

Wake, D.

C. R. Lima, D. Wake, and P. A. Davies, Electron. Lett. 31, 364 (1995).

Wallmeroth, K.

Weller, J. F.

R. C. Steele, Electron. Lett. 19, 69 (1983) ; K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, and J. F. Weller, Electron. Lett. 25, 1242 (1989).

Williams, K. J.

R. C. Steele, Electron. Lett. 19, 69 (1983) ; K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, and J. F. Weller, Electron. Lett. 25, 1242 (1989).

Yao, X. S.

Zhou, B.

Appl. Opt.

Appl. Phys. Lett.

K. Y. Lau, Appl. Phys. Lett. 52, 2214 (1988).

C. R. Acad. Sci. B

A. Kastler, C. R. Acad. Sci. B 271, 999 (1970).

A. Le Floch G. Stephan, C. R. Acad. Sci. B 277, 265 (1973); A. Le Floch, R. Le Naour, and G. Stephan, Phys. Rev. Lett. 39, 1671 (1977).

Electron. Lett.

R. C. Steele, Electron. Lett. 19, 69 (1983) ; K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, and J. F. Weller, Electron. Lett. 25, 1242 (1989).

C. R. Lima, D. Wake, and P. A. Davies, Electron. Lett. 31, 364 (1995).

Hewlett-Packard J.

P. R. Robrish, C. J. Madden, R. L. Van Tuyl, and W. R. Trutna, Jr., Hewlett-Packard J. 46, 63 (1995).

IEEE J. Quantum Electron.

F. Bretenaker and A. Le Floch, IEEE J. Quantum Electron. 26, 1451 (1990).

IEEE Photon. Technol. Lett.

G. W. Baxter, J. M. Dawes, P. Dekker, and D. S. Knowles, IEEE Photon. Technol. Lett. 7, 1137 (1995).

IEEE Trans. Microwave Theory Technol.

D. C. Ni, H. R. Fetterman, and W. Chew, IEEE Trans. Microwave Theory Technol. 38, 608 (1990).

J. Lightwave Technol.

U. Gliese, E. L. Christiensen, and K. E. Stubkjaer, J. Lightwave Technol. 9, 779 (1991).

J. O’Reilly and P. Lane, J. Lightwave Technol. 12, 369 (1994).

Opt. Lett.

Other

In this case, a crystal separating the pump source can also be introduced into the cavity. The laser then behaves as an ordinary one-axis laser, with the beams kept degenerate on the mirrors.

P. A. Leilabady and D. L. Sipes, Proceedings of the Second Annual DARPA / Rome Laboratory Symposium on Photonics Systems for Antenna Applications (Defense Advanced Research Projects Agency, Washington, D.C., 1991).

Here we have ommited the possible birefringence of the YAG rod, since it would only add a constant term in the frequency difference.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics