Abstract

Intracavity second-harmonic generation (SHG) in a single-frequency laser has an associated loss for adjacent nonlasing modes, from sum-frequency generation, that is greater than the loss from SHG for the lasing mode. Mode hopping is thereby suppressed, as the lasing mode dominates neighboring modes. We have investigated this behavior in a Nd:YAG laser with LBO intracavity frequency doubler, obtaining frequency tuning over more than 80 axial mode spacings, without mode hopping.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Geusic, H. J. Levinstein, S. Singh, R. G. Smith, and L. G. Van Uitert, Appl. Phys. Lett. 12, 306 (1968).
    [CrossRef]
  2. T. Baer, J. Opt. Soc. Am. B 3, 1175 (1986).
    [CrossRef]
  3. J. L. Nightingale and J. K. Johnson, in Compact Blue-Green Lasers, Vol. 1 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), paper PD6.
  4. K. I. Martin, W. A. Clarkson, and D. C. Hanna, Opt. Lett. 21, 875 (1996).
    [CrossRef] [PubMed]
  5. K. I. Martin, W. A. Clarkson, and D. C. Hanna, “Stable, high-power, single frequency generation at 532  nm from a diode-bar-pumped Nd:YAG ring laser with intracavity LBO frequency doubler,” submitted to Appl. Opt.
  6. K. I. Martin, W. A. Clarkson, and D. C. Hanna, “Mode-hop suppression behavior in lasers with intracavity second harmonic generation,” submitted to IEEE J. Quantum Electron.

1996 (1)

1986 (1)

1968 (1)

J. E. Geusic, H. J. Levinstein, S. Singh, R. G. Smith, and L. G. Van Uitert, Appl. Phys. Lett. 12, 306 (1968).
[CrossRef]

Baer, T.

Clarkson, W. A.

K. I. Martin, W. A. Clarkson, and D. C. Hanna, Opt. Lett. 21, 875 (1996).
[CrossRef] [PubMed]

K. I. Martin, W. A. Clarkson, and D. C. Hanna, “Stable, high-power, single frequency generation at 532  nm from a diode-bar-pumped Nd:YAG ring laser with intracavity LBO frequency doubler,” submitted to Appl. Opt.

K. I. Martin, W. A. Clarkson, and D. C. Hanna, “Mode-hop suppression behavior in lasers with intracavity second harmonic generation,” submitted to IEEE J. Quantum Electron.

Geusic, J. E.

J. E. Geusic, H. J. Levinstein, S. Singh, R. G. Smith, and L. G. Van Uitert, Appl. Phys. Lett. 12, 306 (1968).
[CrossRef]

Hanna, D. C.

K. I. Martin, W. A. Clarkson, and D. C. Hanna, Opt. Lett. 21, 875 (1996).
[CrossRef] [PubMed]

K. I. Martin, W. A. Clarkson, and D. C. Hanna, “Stable, high-power, single frequency generation at 532  nm from a diode-bar-pumped Nd:YAG ring laser with intracavity LBO frequency doubler,” submitted to Appl. Opt.

K. I. Martin, W. A. Clarkson, and D. C. Hanna, “Mode-hop suppression behavior in lasers with intracavity second harmonic generation,” submitted to IEEE J. Quantum Electron.

Johnson, J. K.

J. L. Nightingale and J. K. Johnson, in Compact Blue-Green Lasers, Vol. 1 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), paper PD6.

Levinstein, H. J.

J. E. Geusic, H. J. Levinstein, S. Singh, R. G. Smith, and L. G. Van Uitert, Appl. Phys. Lett. 12, 306 (1968).
[CrossRef]

Martin, K. I.

K. I. Martin, W. A. Clarkson, and D. C. Hanna, Opt. Lett. 21, 875 (1996).
[CrossRef] [PubMed]

K. I. Martin, W. A. Clarkson, and D. C. Hanna, “Mode-hop suppression behavior in lasers with intracavity second harmonic generation,” submitted to IEEE J. Quantum Electron.

K. I. Martin, W. A. Clarkson, and D. C. Hanna, “Stable, high-power, single frequency generation at 532  nm from a diode-bar-pumped Nd:YAG ring laser with intracavity LBO frequency doubler,” submitted to Appl. Opt.

Nightingale, J. L.

J. L. Nightingale and J. K. Johnson, in Compact Blue-Green Lasers, Vol. 1 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), paper PD6.

Singh, S.

J. E. Geusic, H. J. Levinstein, S. Singh, R. G. Smith, and L. G. Van Uitert, Appl. Phys. Lett. 12, 306 (1968).
[CrossRef]

Smith, R. G.

J. E. Geusic, H. J. Levinstein, S. Singh, R. G. Smith, and L. G. Van Uitert, Appl. Phys. Lett. 12, 306 (1968).
[CrossRef]

Van Uitert, L. G.

J. E. Geusic, H. J. Levinstein, S. Singh, R. G. Smith, and L. G. Van Uitert, Appl. Phys. Lett. 12, 306 (1968).
[CrossRef]

Appl. Phys. Lett. (1)

J. E. Geusic, H. J. Levinstein, S. Singh, R. G. Smith, and L. G. Van Uitert, Appl. Phys. Lett. 12, 306 (1968).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Other (3)

K. I. Martin, W. A. Clarkson, and D. C. Hanna, “Stable, high-power, single frequency generation at 532  nm from a diode-bar-pumped Nd:YAG ring laser with intracavity LBO frequency doubler,” submitted to Appl. Opt.

K. I. Martin, W. A. Clarkson, and D. C. Hanna, “Mode-hop suppression behavior in lasers with intracavity second harmonic generation,” submitted to IEEE J. Quantum Electron.

J. L. Nightingale and J. K. Johnson, in Compact Blue-Green Lasers, Vol. 1 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), paper PD6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Diagram of the intracavity frequency-doubled ring laser, with LBO as the nonlinear crystal, a pair of prisms for cavity-length adjustment, and a 250-µm-thick uncoated fused-silica étalon. R.O.C., radius of curvature.

Fig. 2
Fig. 2

Mode-hop-free tuning range versus conversion efficiency (which we adjust by varying the pump power). The curves show the prediction of the theory for a 150-GHz laser transition bandwidth and an étalon thickness of 250  µm. The solid curve shows the absolute maximum tuning range [Eq.  (2)], and the dashed–dotted curve shows the tuning range predicted by Eq.  ( 4). The circles represent the experimental results.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

loss of modeω1loss of modeω2=kI(ω1)+2kI(ω2)kI(ω2)+2kI(ω1).
Δνmax=ΔνL2ηη+L1/2,
1Δνeff2=1ΔνL2+F2(FSR)2(η+L),
Δνmax=ΔνL2η2(η+L)1/2,

Metrics