Abstract

A simple ring cavity consisting of mirrors reflecting at the second harmonic is used to generate the fourth harmonic of low-power Q-switched Nd:YAG laser pulses. A large beam waist of 1  mm minimized the effects of double refraction and thermal loading of the nonlinear crystals. By simulating the low-power pulses with a small portion of the output from a 30-Hz flash-lamp-pumped Q-switched Nd:YAG laser, we obtained IR–UV energy conversion as great as 39.5% to yield 84-mW average power at 266  nm from 213  mW of single-mode 1064-nm radiation.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. H. Arnold, P. Haglestein, M. Obara, and R. Waynant, IEEE J. Spec. Topics Quantum Electron. 1, 765 (1995).
  2. A. Ashkin, G. D. Boyd, and J. M. Dziedzic, IEEE J. Quantum Electron. QE-2, 109 (1966).
    [CrossRef]
  3. Z. Y. Ou, S. F. Periera, E. S. Polzik, and H. J. Kimble, Opt. Lett. 17, 640 (1992).
    [CrossRef] [PubMed]
  4. R. Paschotta, K. Fiedler, P. Kurz, R. Henking, S. Schiller, and J. Mlynek, Opt. Lett. 19, 1325 (1994).
    [CrossRef] [PubMed]
  5. S. T. Yang, C. C. Pohalski, E. K. Gustafson, R. L. Byer, R. S. Fiegelson, R. J. Raymakers, and R. K. Route, Opt. Lett. 16, 1493 (1991).
    [CrossRef] [PubMed]
  6. P. C. Gerstenberger, G. E. Tye, and R. W. Wallace, Opt. Lett. 16, 992 (1991).
    [CrossRef] [PubMed]
  7. M. A. Persuad, J. M. Tolchard, and A. I. Ferguson, IEEE J. Quantum Electron. 26, 1253 (1990).
    [CrossRef]
  8. M. Oka, L. Y. Liu, W. Wiechmann, N. Eguchi, and S. Kubota, IEEE J. Spec. Top. Quantum Electron. 1, 859 (1995).
    [CrossRef]
  9. G. Giordano and G. Matone, Nuovo Cimento D 12, 927 (1990).
    [CrossRef]
  10. S. C. Tidwell, J. F. Seamans, D. D. Lowenthal, G. Matone, and G. Giordano, Opt. Lett. 18, 1517 (1993).
    [CrossRef]
  11. G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 8, 3597 (1968).
    [CrossRef]

1995 (2)

W. H. Arnold, P. Haglestein, M. Obara, and R. Waynant, IEEE J. Spec. Topics Quantum Electron. 1, 765 (1995).

M. Oka, L. Y. Liu, W. Wiechmann, N. Eguchi, and S. Kubota, IEEE J. Spec. Top. Quantum Electron. 1, 859 (1995).
[CrossRef]

1994 (1)

1993 (1)

1992 (1)

1991 (2)

1990 (2)

M. A. Persuad, J. M. Tolchard, and A. I. Ferguson, IEEE J. Quantum Electron. 26, 1253 (1990).
[CrossRef]

G. Giordano and G. Matone, Nuovo Cimento D 12, 927 (1990).
[CrossRef]

1968 (1)

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 8, 3597 (1968).
[CrossRef]

1966 (1)

A. Ashkin, G. D. Boyd, and J. M. Dziedzic, IEEE J. Quantum Electron. QE-2, 109 (1966).
[CrossRef]

Arnold, W. H.

W. H. Arnold, P. Haglestein, M. Obara, and R. Waynant, IEEE J. Spec. Topics Quantum Electron. 1, 765 (1995).

Ashkin, A.

A. Ashkin, G. D. Boyd, and J. M. Dziedzic, IEEE J. Quantum Electron. QE-2, 109 (1966).
[CrossRef]

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 8, 3597 (1968).
[CrossRef]

A. Ashkin, G. D. Boyd, and J. M. Dziedzic, IEEE J. Quantum Electron. QE-2, 109 (1966).
[CrossRef]

Byer, R. L.

Dziedzic, J. M.

A. Ashkin, G. D. Boyd, and J. M. Dziedzic, IEEE J. Quantum Electron. QE-2, 109 (1966).
[CrossRef]

Eguchi, N.

M. Oka, L. Y. Liu, W. Wiechmann, N. Eguchi, and S. Kubota, IEEE J. Spec. Top. Quantum Electron. 1, 859 (1995).
[CrossRef]

Ferguson, A. I.

M. A. Persuad, J. M. Tolchard, and A. I. Ferguson, IEEE J. Quantum Electron. 26, 1253 (1990).
[CrossRef]

Fiedler, K.

Fiegelson, R. S.

Gerstenberger, P. C.

Giordano, G.

Gustafson, E. K.

Haglestein, P.

W. H. Arnold, P. Haglestein, M. Obara, and R. Waynant, IEEE J. Spec. Topics Quantum Electron. 1, 765 (1995).

Henking, R.

Kimble, H. J.

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 8, 3597 (1968).
[CrossRef]

Kubota, S.

M. Oka, L. Y. Liu, W. Wiechmann, N. Eguchi, and S. Kubota, IEEE J. Spec. Top. Quantum Electron. 1, 859 (1995).
[CrossRef]

Kurz, P.

Liu, L. Y.

M. Oka, L. Y. Liu, W. Wiechmann, N. Eguchi, and S. Kubota, IEEE J. Spec. Top. Quantum Electron. 1, 859 (1995).
[CrossRef]

Lowenthal, D. D.

Matone, G.

Mlynek, J.

Obara, M.

W. H. Arnold, P. Haglestein, M. Obara, and R. Waynant, IEEE J. Spec. Topics Quantum Electron. 1, 765 (1995).

Oka, M.

M. Oka, L. Y. Liu, W. Wiechmann, N. Eguchi, and S. Kubota, IEEE J. Spec. Top. Quantum Electron. 1, 859 (1995).
[CrossRef]

Ou, Z. Y.

Paschotta, R.

Periera, S. F.

Persuad, M. A.

M. A. Persuad, J. M. Tolchard, and A. I. Ferguson, IEEE J. Quantum Electron. 26, 1253 (1990).
[CrossRef]

Pohalski, C. C.

Polzik, E. S.

Raymakers, R. J.

Route, R. K.

Schiller, S.

Seamans, J. F.

Tidwell, S. C.

Tolchard, J. M.

M. A. Persuad, J. M. Tolchard, and A. I. Ferguson, IEEE J. Quantum Electron. 26, 1253 (1990).
[CrossRef]

Tye, G. E.

Wallace, R. W.

Waynant, R.

W. H. Arnold, P. Haglestein, M. Obara, and R. Waynant, IEEE J. Spec. Topics Quantum Electron. 1, 765 (1995).

Wiechmann, W.

M. Oka, L. Y. Liu, W. Wiechmann, N. Eguchi, and S. Kubota, IEEE J. Spec. Top. Quantum Electron. 1, 859 (1995).
[CrossRef]

Yang, S. T.

IEEE J. Quantum Electron. (2)

A. Ashkin, G. D. Boyd, and J. M. Dziedzic, IEEE J. Quantum Electron. QE-2, 109 (1966).
[CrossRef]

M. A. Persuad, J. M. Tolchard, and A. I. Ferguson, IEEE J. Quantum Electron. 26, 1253 (1990).
[CrossRef]

IEEE J. Spec. Top. Quantum Electron. (1)

M. Oka, L. Y. Liu, W. Wiechmann, N. Eguchi, and S. Kubota, IEEE J. Spec. Top. Quantum Electron. 1, 859 (1995).
[CrossRef]

IEEE J. Spec. Topics Quantum Electron. (1)

W. H. Arnold, P. Haglestein, M. Obara, and R. Waynant, IEEE J. Spec. Topics Quantum Electron. 1, 765 (1995).

J. Appl. Phys. (1)

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 8, 3597 (1968).
[CrossRef]

Nuovo Cimento D (1)

G. Giordano and G. Matone, Nuovo Cimento D 12, 927 (1990).
[CrossRef]

Opt. Lett. (5)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the experimental setup: M1–M4, flat dielectric mirrors coated for >99% reflectivity at 532  nm; PZT, piezoelectric transducer; BS, 4% beam splitter; D, pyroelectric detector; KTP, potassium titanium phosphate SHG crystal; BBO, β-barium borate FHG crystal. IR is 1064  nm, visible (VIS) is 532  nm, and UV is 266  nm.

Fig. 2
Fig. 2

(a) Generated single-pulse UV energy exiting the BBO crystal versus IR input incident upon the KTP crystal. Circles, single-pass results with the path between mirrors M1 and M4 blocked; squares, resonantly enhanced results. (b) Enhancement factor of UV output as a result of the recirculating cavity, equal to the enhanced output divided by the single-pass output.

Fig. 3
Fig. 3

Measured overall IR–UV conversion efficiency for the case of single-longitudinal-mode pulses.

Fig. 4
Fig. 4

Image and profile of the UV beam 2  m away from the output mirror, M4, showing a beam that has a 96% fit to a Gaussian profile and an ellipticity of 0.88. Top, two-dimensional image in a 16-shade gray scale; bottom, three-dimensional profile.

Metrics