Abstract

We have observed efficient two-photon, two-step recording in a praseodymium-doped lithium niobate crystal by use of cw lasers. Single-photon erasure during the readout at near-infrared wavelengths was found to be negligible. Nonvolatile holographic image storage was demonstrated. This progress is an important step in the realization of an economically feasible nonvolatile read–write holographic recording system based on low-cost semiconductor diode lasers.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Günter and J.-P. Huignard, eds., Photorefractive Materials and Their Applications I (Springer-Verlag, Berlin, 1988).
    [CrossRef]
  2. A. M. Glass and D. von der Linde, U.S. patent3,922,061 (November1975).
  3. H. Vormann and E. Kratzig, Solid State Commun. 49, 843 (1984).
    [CrossRef]
  4. K. Buse, F. Jermann, and E. Kratzig, Opt. Mater. 4, 237 (1995); K. Buse, L. Holtmann, and E. Kratzig, Opt. Commun. 85, 183 (1991).
    [CrossRef]
  5. Y. S. Bai and R. Kachru, U.S. patent (November1995).
  6. O. F. Schirmer and D. von der Linde, Appl. Phys. Lett. 33, 35 (1975).
    [CrossRef]
  7. K. L. Sweeney and L. E. Halliburton, Appl. Phys. Lett. 43, 336 (1983).
    [CrossRef]
  8. J. Feinberg, D. Heiman, A. R. Tanguay, and R. W. Hellwarth, J. Appl. Phys. 51, 1297 (1980).
    [CrossRef]

1995 (1)

K. Buse, F. Jermann, and E. Kratzig, Opt. Mater. 4, 237 (1995); K. Buse, L. Holtmann, and E. Kratzig, Opt. Commun. 85, 183 (1991).
[CrossRef]

1984 (1)

H. Vormann and E. Kratzig, Solid State Commun. 49, 843 (1984).
[CrossRef]

1983 (1)

K. L. Sweeney and L. E. Halliburton, Appl. Phys. Lett. 43, 336 (1983).
[CrossRef]

1980 (1)

J. Feinberg, D. Heiman, A. R. Tanguay, and R. W. Hellwarth, J. Appl. Phys. 51, 1297 (1980).
[CrossRef]

1975 (1)

O. F. Schirmer and D. von der Linde, Appl. Phys. Lett. 33, 35 (1975).
[CrossRef]

Bai, Y. S.

Y. S. Bai and R. Kachru, U.S. patent (November1995).

Buse, K.

K. Buse, F. Jermann, and E. Kratzig, Opt. Mater. 4, 237 (1995); K. Buse, L. Holtmann, and E. Kratzig, Opt. Commun. 85, 183 (1991).
[CrossRef]

Feinberg, J.

J. Feinberg, D. Heiman, A. R. Tanguay, and R. W. Hellwarth, J. Appl. Phys. 51, 1297 (1980).
[CrossRef]

Glass, A. M.

A. M. Glass and D. von der Linde, U.S. patent3,922,061 (November1975).

Halliburton, L. E.

K. L. Sweeney and L. E. Halliburton, Appl. Phys. Lett. 43, 336 (1983).
[CrossRef]

Heiman, D.

J. Feinberg, D. Heiman, A. R. Tanguay, and R. W. Hellwarth, J. Appl. Phys. 51, 1297 (1980).
[CrossRef]

Hellwarth, R. W.

J. Feinberg, D. Heiman, A. R. Tanguay, and R. W. Hellwarth, J. Appl. Phys. 51, 1297 (1980).
[CrossRef]

Jermann, F.

K. Buse, F. Jermann, and E. Kratzig, Opt. Mater. 4, 237 (1995); K. Buse, L. Holtmann, and E. Kratzig, Opt. Commun. 85, 183 (1991).
[CrossRef]

Kachru, R.

Y. S. Bai and R. Kachru, U.S. patent (November1995).

Kratzig, E.

K. Buse, F. Jermann, and E. Kratzig, Opt. Mater. 4, 237 (1995); K. Buse, L. Holtmann, and E. Kratzig, Opt. Commun. 85, 183 (1991).
[CrossRef]

H. Vormann and E. Kratzig, Solid State Commun. 49, 843 (1984).
[CrossRef]

Schirmer, O. F.

O. F. Schirmer and D. von der Linde, Appl. Phys. Lett. 33, 35 (1975).
[CrossRef]

Sweeney, K. L.

K. L. Sweeney and L. E. Halliburton, Appl. Phys. Lett. 43, 336 (1983).
[CrossRef]

Tanguay, A. R.

J. Feinberg, D. Heiman, A. R. Tanguay, and R. W. Hellwarth, J. Appl. Phys. 51, 1297 (1980).
[CrossRef]

von der Linde, D.

O. F. Schirmer and D. von der Linde, Appl. Phys. Lett. 33, 35 (1975).
[CrossRef]

A. M. Glass and D. von der Linde, U.S. patent3,922,061 (November1975).

Vormann, H.

H. Vormann and E. Kratzig, Solid State Commun. 49, 843 (1984).
[CrossRef]

Appl. Phys. Lett. (2)

O. F. Schirmer and D. von der Linde, Appl. Phys. Lett. 33, 35 (1975).
[CrossRef]

K. L. Sweeney and L. E. Halliburton, Appl. Phys. Lett. 43, 336 (1983).
[CrossRef]

J. Appl. Phys. (1)

J. Feinberg, D. Heiman, A. R. Tanguay, and R. W. Hellwarth, J. Appl. Phys. 51, 1297 (1980).
[CrossRef]

Opt. Mater. (1)

K. Buse, F. Jermann, and E. Kratzig, Opt. Mater. 4, 237 (1995); K. Buse, L. Holtmann, and E. Kratzig, Opt. Commun. 85, 183 (1991).
[CrossRef]

Solid State Commun. (1)

H. Vormann and E. Kratzig, Solid State Commun. 49, 843 (1984).
[CrossRef]

Other (3)

Y. S. Bai and R. Kachru, U.S. patent (November1995).

P. Günter and J.-P. Huignard, eds., Photorefractive Materials and Their Applications I (Springer-Verlag, Berlin, 1988).
[CrossRef]

A. M. Glass and D. von der Linde, U.S. patent3,922,061 (November1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Two-photon holographic recording. EO ER denotes the object (reference) beam. EG denotes the gating beam that brings electrons to an intermediate state. The object and reference beams then excite the electrons to the conduction band to record the hologram. In reading the hologram, only the reference beam is on. ES denotes the diffracted beam. C.B., conduction band; V.B., valence band.

Fig. 2
Fig. 2

Time-delayed two-color writing in praseodymium-doped lithium niobate. The diffraction efficiency is plotted as a function of the time delay between the writing pulses and the gating pulse. All pulses have the same duration of 1  ms.

Fig. 3
Fig. 3

Nonvolatile holographic image storage by use of two-step recording. Left, virtual image from the hologram a few minutes after writing. Right, image after 20  h of storage and 2  h of continuous reading.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η=η0 exp-2tD/τ,

Metrics