Abstract

A laser model based on feedback produced by scattering has been developed to explain the narrow linewidth emission and input–output behavior observed in scattering gain media. The model is based on the transient two-level laser equations and includes the detailed spectral properties of the dye gain system. Monte Carlo methods were employed to calculate the threshold gain required for modeling the input–output and linewidth emission characteristics.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, Nature (London) 368, 436 (1994).
  2. R. M. Balachandran and N. M. Lawandy, Opt. Lett. 20, 1271 (1995).
    [CrossRef] [PubMed]
  3. N. M. Lawandy and R. M. Balachandran, Nature (London) 373, 203 (1995).
  4. A. Z. Genack and J. M. Drake, Nature (London) 368, 400 (1994).
  5. R. M. Balachandran, D. P. Pacheco, and N. M. Lawandy, Appl. Opt. 35, 640 (1996).
    [CrossRef] [PubMed]
  6. J. Martorell, R. M. Balachandran, and N. M. Lawandy, Opt. Lett. 21, 239 (1996).
    [CrossRef] [PubMed]
  7. W. L. Sha, C. H. Liu, and R. R. Alfano, Opt. Lett. 19, 1922 (1994).
    [CrossRef] [PubMed]
  8. W. Zhang, N. Cue, and K. M. Yoo, Opt. Lett. 20, 961 (1995).
    [CrossRef]
  9. R. V. Ambartsumyan, N. G. Basov, P. G. Kryukov, and V. S. Letokhov, Prog. Quantum Electron. 1, 109 (1970).
    [CrossRef]
  10. D. S. Wiersma, M. P. van Albada, and A. Lagendijk, Nature (London) 373, 202 (1995).
  11. M. A. Noginov, H. J. Caulfield, N. E. Noginova, and P. Venkateswarlu, Opt. Commun. 118, 430 (1995).
    [CrossRef]
  12. A. Migus, C. V. Shank, E. P. Ippen, and R. L. Fork, IEEE J. Quantum Electron. QE-18, 101 (1982).
    [CrossRef]
  13. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), pp. 175–190.
    [CrossRef]
  14. E. D. Cashwell and C. J. Everett, A Practical Manual on the Monte Carlo Method for Random Walk Problems (Pergamon, New York, 1959).
  15. A. N. Witt, Astrophys. J. Suppl. Ser. 35, 1 (1977).
    [CrossRef]
  16. L. G. Nair, Prog. Quantum Electron. 7, 109 (1982).
    [CrossRef]

1996 (2)

1995 (5)

W. Zhang, N. Cue, and K. M. Yoo, Opt. Lett. 20, 961 (1995).
[CrossRef]

R. M. Balachandran and N. M. Lawandy, Opt. Lett. 20, 1271 (1995).
[CrossRef] [PubMed]

D. S. Wiersma, M. P. van Albada, and A. Lagendijk, Nature (London) 373, 202 (1995).

M. A. Noginov, H. J. Caulfield, N. E. Noginova, and P. Venkateswarlu, Opt. Commun. 118, 430 (1995).
[CrossRef]

N. M. Lawandy and R. M. Balachandran, Nature (London) 373, 203 (1995).

1994 (3)

A. Z. Genack and J. M. Drake, Nature (London) 368, 400 (1994).

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, Nature (London) 368, 436 (1994).

W. L. Sha, C. H. Liu, and R. R. Alfano, Opt. Lett. 19, 1922 (1994).
[CrossRef] [PubMed]

1982 (2)

L. G. Nair, Prog. Quantum Electron. 7, 109 (1982).
[CrossRef]

A. Migus, C. V. Shank, E. P. Ippen, and R. L. Fork, IEEE J. Quantum Electron. QE-18, 101 (1982).
[CrossRef]

1977 (1)

A. N. Witt, Astrophys. J. Suppl. Ser. 35, 1 (1977).
[CrossRef]

1970 (1)

R. V. Ambartsumyan, N. G. Basov, P. G. Kryukov, and V. S. Letokhov, Prog. Quantum Electron. 1, 109 (1970).
[CrossRef]

Alfano, R. R.

Ambartsumyan, R. V.

R. V. Ambartsumyan, N. G. Basov, P. G. Kryukov, and V. S. Letokhov, Prog. Quantum Electron. 1, 109 (1970).
[CrossRef]

Balachandran, R. M.

Basov, N. G.

R. V. Ambartsumyan, N. G. Basov, P. G. Kryukov, and V. S. Letokhov, Prog. Quantum Electron. 1, 109 (1970).
[CrossRef]

Cashwell, E. D.

E. D. Cashwell and C. J. Everett, A Practical Manual on the Monte Carlo Method for Random Walk Problems (Pergamon, New York, 1959).

Caulfield, H. J.

M. A. Noginov, H. J. Caulfield, N. E. Noginova, and P. Venkateswarlu, Opt. Commun. 118, 430 (1995).
[CrossRef]

Cue, N.

Drake, J. M.

A. Z. Genack and J. M. Drake, Nature (London) 368, 400 (1994).

Everett, C. J.

E. D. Cashwell and C. J. Everett, A Practical Manual on the Monte Carlo Method for Random Walk Problems (Pergamon, New York, 1959).

Fork, R. L.

A. Migus, C. V. Shank, E. P. Ippen, and R. L. Fork, IEEE J. Quantum Electron. QE-18, 101 (1982).
[CrossRef]

Genack, A. Z.

A. Z. Genack and J. M. Drake, Nature (London) 368, 400 (1994).

Gomes, A. S. L.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, Nature (London) 368, 436 (1994).

Ippen, E. P.

A. Migus, C. V. Shank, E. P. Ippen, and R. L. Fork, IEEE J. Quantum Electron. QE-18, 101 (1982).
[CrossRef]

Ishimaru, A.

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), pp. 175–190.
[CrossRef]

Kryukov, P. G.

R. V. Ambartsumyan, N. G. Basov, P. G. Kryukov, and V. S. Letokhov, Prog. Quantum Electron. 1, 109 (1970).
[CrossRef]

Lagendijk, A.

D. S. Wiersma, M. P. van Albada, and A. Lagendijk, Nature (London) 373, 202 (1995).

Lawandy, N. M.

Letokhov, V. S.

R. V. Ambartsumyan, N. G. Basov, P. G. Kryukov, and V. S. Letokhov, Prog. Quantum Electron. 1, 109 (1970).
[CrossRef]

Liu, C. H.

Martorell, J.

Migus, A.

A. Migus, C. V. Shank, E. P. Ippen, and R. L. Fork, IEEE J. Quantum Electron. QE-18, 101 (1982).
[CrossRef]

Nair, L. G.

L. G. Nair, Prog. Quantum Electron. 7, 109 (1982).
[CrossRef]

Noginov, M. A.

M. A. Noginov, H. J. Caulfield, N. E. Noginova, and P. Venkateswarlu, Opt. Commun. 118, 430 (1995).
[CrossRef]

Noginova, N. E.

M. A. Noginov, H. J. Caulfield, N. E. Noginova, and P. Venkateswarlu, Opt. Commun. 118, 430 (1995).
[CrossRef]

Pacheco, D. P.

Sauvain, E.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, Nature (London) 368, 436 (1994).

Sha, W. L.

Shank, C. V.

A. Migus, C. V. Shank, E. P. Ippen, and R. L. Fork, IEEE J. Quantum Electron. QE-18, 101 (1982).
[CrossRef]

van Albada, M. P.

D. S. Wiersma, M. P. van Albada, and A. Lagendijk, Nature (London) 373, 202 (1995).

Venkateswarlu, P.

M. A. Noginov, H. J. Caulfield, N. E. Noginova, and P. Venkateswarlu, Opt. Commun. 118, 430 (1995).
[CrossRef]

Wiersma, D. S.

D. S. Wiersma, M. P. van Albada, and A. Lagendijk, Nature (London) 373, 202 (1995).

Witt, A. N.

A. N. Witt, Astrophys. J. Suppl. Ser. 35, 1 (1977).
[CrossRef]

Yoo, K. M.

Zhang, W.

Appl. Opt. (1)

Astrophys. J. Suppl. Ser. (1)

A. N. Witt, Astrophys. J. Suppl. Ser. 35, 1 (1977).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. Migus, C. V. Shank, E. P. Ippen, and R. L. Fork, IEEE J. Quantum Electron. QE-18, 101 (1982).
[CrossRef]

Nature (London) (4)

D. S. Wiersma, M. P. van Albada, and A. Lagendijk, Nature (London) 373, 202 (1995).

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, Nature (London) 368, 436 (1994).

N. M. Lawandy and R. M. Balachandran, Nature (London) 373, 203 (1995).

A. Z. Genack and J. M. Drake, Nature (London) 368, 400 (1994).

Opt. Commun. (1)

M. A. Noginov, H. J. Caulfield, N. E. Noginova, and P. Venkateswarlu, Opt. Commun. 118, 430 (1995).
[CrossRef]

Opt. Lett. (4)

Prog. Quantum Electron. (2)

L. G. Nair, Prog. Quantum Electron. 7, 109 (1982).
[CrossRef]

R. V. Ambartsumyan, N. G. Basov, P. G. Kryukov, and V. S. Letokhov, Prog. Quantum Electron. 1, 109 (1970).
[CrossRef]

Other (2)

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), pp. 175–190.
[CrossRef]

E. D. Cashwell and C. J. Everett, A Practical Manual on the Monte Carlo Method for Random Walk Problems (Pergamon, New York, 1959).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Pictorial representation of the scattering gain medium and the surrounding unpumped volume that provides the feedback essential for the lasing process.

Fig. 2
Fig. 2

Input–output characteristics of the scattering gain media for three scatterer densities: 20  mg/mL (top), 30  mg/mL (middle), 50  mg/mL (bottom).

Fig. 3
Fig. 3

Linewidth as a function of the pump energy for three scatterer densities: 20  mg/mL (top), 30  mg/mL (middle), 50  mg/mL (bottom).

Tables (1)

Tables Icon

Table 1 R1, R2, L, and γth and Fit Parameters β and Lf as a Function of Scatterer Density

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

H=3lt/3αp,
expγthLR1R2=1.
dn2tdt=1-n2tBpIpt-n2tdλBlλIlλ,t-n2tΓ,
dI1λ,tdt=cγ0λn2t-γthIlλ,t+ηλn2t,
Ilcλ,t=βIlλ,t+1-βIlλ,texp-Lflt/3αλ,
γc=lt32.4R2+πH2.

Metrics