Abstract

Two-photon photoconductivity in ZnSe is used to record femtosecond autocorrelation functions. This technique requires <100 µW of average power of a typical mode-locked femtosecond Ti:sapphire laser and distinguishes itself by a dynamic range over several decades and great conversion bandwidth, permitting the sensitive correlation of pulses of a few femtoseconds.

© 1997 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Femtosecond ultraviolet autocorrelation measurements based on two-photon conductivity in fused silica

Alexandre M. Streltsov, Jinendra K. Ranka, and Alexander L. Gaeta
Opt. Lett. 23(10) 798-800 (1998)

Autocorrelation measurement of femtosecond laser pulses by use of a ZnSe two-photon detector array

A. Gutierrez, P. Dorn, J. Zeller, D. King, L. F. Lester, W. Rudolph, and M. Sheik-Bahae
Opt. Lett. 24(16) 1175-1177 (1999)

Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode

Jinendra K. Ranka, Alexander L. Gaeta, Andrius Baltuska, Maxim S. Pshenichnikov, and Douwe A. Wiersma
Opt. Lett. 22(17) 1344-1346 (1997)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription