Abstract

Two-photon photoconductivity in ZnSe is used to record femtosecond autocorrelation functions. This technique requires <100 µW of average power of a typical mode-locked femtosecond Ti:sapphire laser and distinguishes itself by a dynamic range over several decades and great conversion bandwidth, permitting the sensitive correlation of pulses of a few femtoseconds.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale (Academic, San Diego, Calif., 1996), pp. 365–399.
  2. Y. Takagi, T. Kobayashi, K. Yoshihara, and S. Imamura, Opt. Lett. 17, 658 (1992).
    [CrossRef] [PubMed]
  3. C. H. Lee, in Picosecond Optoelectronic Devices, C. H. Lee, ed. (Academic, London, 1984), pp. 156–161.
  4. S. Szatmari and F. P. Schaefer, in Ultrafast Phenomena VI, T. Yajima, K. Yoshihara, C. B. Harris, and S. Shionoya, eds. (Springer-Verlag, Berlin, 1988), pp. 82–86.
    [CrossRef]
  5. E. W. Van Stryland, M. A. Woodall, H. Vanherzeele, and M. J. Soileau, Opt. Lett. 10, 490 (1985).
    [CrossRef] [PubMed]
  6. J. I. Pankove, Optical Processes in Semiconductors (Dover, New York, 1971), p. 412.
  7. E. J. Canto-Seid, D. J. Hagan, J. Young, and E. W. Van Stryland, IEEE J. Quantum Electron. 27, 2274 (1991).
    [CrossRef]
  8. F. R. Laughton, J. H. Marsh, D. A. Barrow, and E. L. Portnoi, IEEE J. Quantum Electron. 30, 838 (1994).
    [CrossRef]

1994 (1)

F. R. Laughton, J. H. Marsh, D. A. Barrow, and E. L. Portnoi, IEEE J. Quantum Electron. 30, 838 (1994).
[CrossRef]

1992 (1)

1991 (1)

E. J. Canto-Seid, D. J. Hagan, J. Young, and E. W. Van Stryland, IEEE J. Quantum Electron. 27, 2274 (1991).
[CrossRef]

1985 (1)

Barrow, D. A.

F. R. Laughton, J. H. Marsh, D. A. Barrow, and E. L. Portnoi, IEEE J. Quantum Electron. 30, 838 (1994).
[CrossRef]

Canto-Seid, E. J.

E. J. Canto-Seid, D. J. Hagan, J. Young, and E. W. Van Stryland, IEEE J. Quantum Electron. 27, 2274 (1991).
[CrossRef]

Diels, J.-C.

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale (Academic, San Diego, Calif., 1996), pp. 365–399.

Hagan, D. J.

E. J. Canto-Seid, D. J. Hagan, J. Young, and E. W. Van Stryland, IEEE J. Quantum Electron. 27, 2274 (1991).
[CrossRef]

Imamura, S.

Kobayashi, T.

Laughton, F. R.

F. R. Laughton, J. H. Marsh, D. A. Barrow, and E. L. Portnoi, IEEE J. Quantum Electron. 30, 838 (1994).
[CrossRef]

Lee, C. H.

C. H. Lee, in Picosecond Optoelectronic Devices, C. H. Lee, ed. (Academic, London, 1984), pp. 156–161.

Marsh, J. H.

F. R. Laughton, J. H. Marsh, D. A. Barrow, and E. L. Portnoi, IEEE J. Quantum Electron. 30, 838 (1994).
[CrossRef]

Pankove, J. I.

J. I. Pankove, Optical Processes in Semiconductors (Dover, New York, 1971), p. 412.

Portnoi, E. L.

F. R. Laughton, J. H. Marsh, D. A. Barrow, and E. L. Portnoi, IEEE J. Quantum Electron. 30, 838 (1994).
[CrossRef]

Rudolph, W.

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale (Academic, San Diego, Calif., 1996), pp. 365–399.

Schaefer, F. P.

S. Szatmari and F. P. Schaefer, in Ultrafast Phenomena VI, T. Yajima, K. Yoshihara, C. B. Harris, and S. Shionoya, eds. (Springer-Verlag, Berlin, 1988), pp. 82–86.
[CrossRef]

Soileau, M. J.

Szatmari, S.

S. Szatmari and F. P. Schaefer, in Ultrafast Phenomena VI, T. Yajima, K. Yoshihara, C. B. Harris, and S. Shionoya, eds. (Springer-Verlag, Berlin, 1988), pp. 82–86.
[CrossRef]

Takagi, Y.

Van Stryland, E. W.

E. J. Canto-Seid, D. J. Hagan, J. Young, and E. W. Van Stryland, IEEE J. Quantum Electron. 27, 2274 (1991).
[CrossRef]

E. W. Van Stryland, M. A. Woodall, H. Vanherzeele, and M. J. Soileau, Opt. Lett. 10, 490 (1985).
[CrossRef] [PubMed]

Vanherzeele, H.

Woodall, M. A.

Yoshihara, K.

Young, J.

E. J. Canto-Seid, D. J. Hagan, J. Young, and E. W. Van Stryland, IEEE J. Quantum Electron. 27, 2274 (1991).
[CrossRef]

IEEE J. Quantum Electron. (2)

E. J. Canto-Seid, D. J. Hagan, J. Young, and E. W. Van Stryland, IEEE J. Quantum Electron. 27, 2274 (1991).
[CrossRef]

F. R. Laughton, J. H. Marsh, D. A. Barrow, and E. L. Portnoi, IEEE J. Quantum Electron. 30, 838 (1994).
[CrossRef]

Opt. Lett. (2)

Other (4)

J. I. Pankove, Optical Processes in Semiconductors (Dover, New York, 1971), p. 412.

C. H. Lee, in Picosecond Optoelectronic Devices, C. H. Lee, ed. (Academic, London, 1984), pp. 156–161.

S. Szatmari and F. P. Schaefer, in Ultrafast Phenomena VI, T. Yajima, K. Yoshihara, C. B. Harris, and S. Shionoya, eds. (Springer-Verlag, Berlin, 1988), pp. 82–86.
[CrossRef]

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale (Academic, San Diego, Calif., 1996), pp. 365–399.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Layout of the metal–semiconductor–metal photoconductive switch and biasing circuit.

Fig. 2
Fig. 2

Measured voltage as a function of the mean incident power of a 120-fs, 76-MHz Ti:sapphire laser operating at 800  nm. (a) Bias voltage V=38 V, finger spacing d=10 µm; (b) bias voltage V=15 V, finger spacing d=5 µm. The solid curves show theoretical fits. The inset displays an intensity autocorrelation taken at 95-µW mean power.

Fig. 3
Fig. 3

Measured signal as a function of the bias applied to the ZnSe two-photon photoconductive switch illuminated by a 120-fs, 76-MHz Ti:sapphire laser. The mean power used for curve (b) was 0.45 of the mean power used for curve (a).

Fig. 4
Fig. 4

Interferometric autocorrelation of a Ti:sapphire laser based on two-photon photoconductivity in ZnSe.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

VLP¯=VRLRL+G0+qP¯α-1·
GP¯=qP¯2=d3γβ1-R2P¯2τrecTrt2hνw04tpeµd2·

Metrics