Abstract

We investigate both numerically and experimentally soliton propagation in a fiber loop with dispersion management, in-line filters, and frequency shifting. More than 90% of the fiber in the loop is in the normal-dispersion regime, but the net dispersion is anomalous. Stable pulses in the loop have an enhanced power relative to solitons in a fiber with uniform dispersion equal to the loop’s path-averaged dispersion. Because the loop’s path-averaged dispersion is small, the in-line filtering and the frequency shifting play an important role in pulse shaping. Recirculating loop experiments that demonstrate stable pulse propagation over 28,000 km are consistent with results from computer modeling.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Suzuki, I. Morita, S. Yamamoto, N. Edagawa, H. Taga, and S. Akiba, Electron. Lett. 23, 2027 (1995).
    [Crossref]
  2. M. Nakazawa and H. Kubota, Electron. Lett. 31, 216 (1995).
    [Crossref]
  3. N. J. Smith, F. M. Knox, N. J. Doran, K. J. Blow, and I. Bennion, Electron. Lett. 32, 54 (1996); M. Nakazawa, H. Kubota, A. Sahara, and K. Tamura, IEEE Photonics Technol. Lett. 8, 1088 (1996).
    [Crossref]
  4. L. F. Mollenauer, P. V. Mamyshev, and M. J. Neubelt, Opt. Lett. 19, 704 (1994).
    [Crossref] [PubMed]
  5. E. A. Golovchenko and A. N. Pilipetskii, J. Lightwave Technol. 12, 1052 (1994).
    [Crossref]
  6. H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, IEEE J. Quantum Electron. 31, 591 (1995).
    [Crossref]
  7. A. Hasegawa and Y. Kodama, Solitons in Optical Communications (Clarendon, Oxford, 1995), pp. 134–139.
  8. P. V. Mamyshev and L. F. Mollenauer, Opt. Lett. 19, 2083 (1994).
    [Crossref] [PubMed]
  9. M. Matsumoto and A. Hasegawa, Opt. Lett. 18, 897 (1993).
    [Crossref]

1996 (1)

N. J. Smith, F. M. Knox, N. J. Doran, K. J. Blow, and I. Bennion, Electron. Lett. 32, 54 (1996); M. Nakazawa, H. Kubota, A. Sahara, and K. Tamura, IEEE Photonics Technol. Lett. 8, 1088 (1996).
[Crossref]

1995 (3)

M. Suzuki, I. Morita, S. Yamamoto, N. Edagawa, H. Taga, and S. Akiba, Electron. Lett. 23, 2027 (1995).
[Crossref]

M. Nakazawa and H. Kubota, Electron. Lett. 31, 216 (1995).
[Crossref]

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, IEEE J. Quantum Electron. 31, 591 (1995).
[Crossref]

1994 (3)

1993 (1)

Akiba, S.

M. Suzuki, I. Morita, S. Yamamoto, N. Edagawa, H. Taga, and S. Akiba, Electron. Lett. 23, 2027 (1995).
[Crossref]

Bennion, I.

N. J. Smith, F. M. Knox, N. J. Doran, K. J. Blow, and I. Bennion, Electron. Lett. 32, 54 (1996); M. Nakazawa, H. Kubota, A. Sahara, and K. Tamura, IEEE Photonics Technol. Lett. 8, 1088 (1996).
[Crossref]

Blow, K. J.

N. J. Smith, F. M. Knox, N. J. Doran, K. J. Blow, and I. Bennion, Electron. Lett. 32, 54 (1996); M. Nakazawa, H. Kubota, A. Sahara, and K. Tamura, IEEE Photonics Technol. Lett. 8, 1088 (1996).
[Crossref]

Doran, N. J.

N. J. Smith, F. M. Knox, N. J. Doran, K. J. Blow, and I. Bennion, Electron. Lett. 32, 54 (1996); M. Nakazawa, H. Kubota, A. Sahara, and K. Tamura, IEEE Photonics Technol. Lett. 8, 1088 (1996).
[Crossref]

Edagawa, N.

M. Suzuki, I. Morita, S. Yamamoto, N. Edagawa, H. Taga, and S. Akiba, Electron. Lett. 23, 2027 (1995).
[Crossref]

Golovchenko, E. A.

E. A. Golovchenko and A. N. Pilipetskii, J. Lightwave Technol. 12, 1052 (1994).
[Crossref]

Hasegawa, A.

M. Matsumoto and A. Hasegawa, Opt. Lett. 18, 897 (1993).
[Crossref]

A. Hasegawa and Y. Kodama, Solitons in Optical Communications (Clarendon, Oxford, 1995), pp. 134–139.

Haus, H. A.

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, IEEE J. Quantum Electron. 31, 591 (1995).
[Crossref]

Ippen, E. P.

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, IEEE J. Quantum Electron. 31, 591 (1995).
[Crossref]

Knox, F. M.

N. J. Smith, F. M. Knox, N. J. Doran, K. J. Blow, and I. Bennion, Electron. Lett. 32, 54 (1996); M. Nakazawa, H. Kubota, A. Sahara, and K. Tamura, IEEE Photonics Technol. Lett. 8, 1088 (1996).
[Crossref]

Kodama, Y.

A. Hasegawa and Y. Kodama, Solitons in Optical Communications (Clarendon, Oxford, 1995), pp. 134–139.

Kubota, H.

M. Nakazawa and H. Kubota, Electron. Lett. 31, 216 (1995).
[Crossref]

Mamyshev, P. V.

Matsumoto, M.

Mollenauer, L. F.

Morita, I.

M. Suzuki, I. Morita, S. Yamamoto, N. Edagawa, H. Taga, and S. Akiba, Electron. Lett. 23, 2027 (1995).
[Crossref]

Nakazawa, M.

M. Nakazawa and H. Kubota, Electron. Lett. 31, 216 (1995).
[Crossref]

Nelson, L. E.

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, IEEE J. Quantum Electron. 31, 591 (1995).
[Crossref]

Neubelt, M. J.

Pilipetskii, A. N.

E. A. Golovchenko and A. N. Pilipetskii, J. Lightwave Technol. 12, 1052 (1994).
[Crossref]

Smith, N. J.

N. J. Smith, F. M. Knox, N. J. Doran, K. J. Blow, and I. Bennion, Electron. Lett. 32, 54 (1996); M. Nakazawa, H. Kubota, A. Sahara, and K. Tamura, IEEE Photonics Technol. Lett. 8, 1088 (1996).
[Crossref]

Suzuki, M.

M. Suzuki, I. Morita, S. Yamamoto, N. Edagawa, H. Taga, and S. Akiba, Electron. Lett. 23, 2027 (1995).
[Crossref]

Taga, H.

M. Suzuki, I. Morita, S. Yamamoto, N. Edagawa, H. Taga, and S. Akiba, Electron. Lett. 23, 2027 (1995).
[Crossref]

Tamura, K.

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, IEEE J. Quantum Electron. 31, 591 (1995).
[Crossref]

Yamamoto, S.

M. Suzuki, I. Morita, S. Yamamoto, N. Edagawa, H. Taga, and S. Akiba, Electron. Lett. 23, 2027 (1995).
[Crossref]

Electron. Lett. (3)

M. Suzuki, I. Morita, S. Yamamoto, N. Edagawa, H. Taga, and S. Akiba, Electron. Lett. 23, 2027 (1995).
[Crossref]

M. Nakazawa and H. Kubota, Electron. Lett. 31, 216 (1995).
[Crossref]

N. J. Smith, F. M. Knox, N. J. Doran, K. J. Blow, and I. Bennion, Electron. Lett. 32, 54 (1996); M. Nakazawa, H. Kubota, A. Sahara, and K. Tamura, IEEE Photonics Technol. Lett. 8, 1088 (1996).
[Crossref]

IEEE J. Quantum Electron. (1)

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, IEEE J. Quantum Electron. 31, 591 (1995).
[Crossref]

J. Lightwave Technol. (1)

E. A. Golovchenko and A. N. Pilipetskii, J. Lightwave Technol. 12, 1052 (1994).
[Crossref]

Opt. Lett. (3)

Other (1)

A. Hasegawa and Y. Kodama, Solitons in Optical Communications (Clarendon, Oxford, 1995), pp. 134–139.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup of the recirculating fiber-optic loop.

Fig. 2
Fig. 2

Calculated evolution of the pulse peak intensity, duration at FWHM, and the absolute value of the pulse mean frequency in the transmission scheme shown in Fig.  1. The input pulse intensity was Iz=0=2.25I0, where I0 is the intensity of an average soliton. The pulse width is normalized to the input pulse width, and the mean frequency is shown in soliton units. The data are plotted at the last amplifier output after each dispersion map. The solid curve corresponds to the case in which there are no filters, amplifiers, or frequency shifting. The dashed curve corresponds to the loop with in-line filters and amplifiers but no frequency shifting; the excess gain α=0.27. The dotted–dashed curve and the dotted curve correspond to a loop with in-line filters, amplifiers, and frequency shifting; the excess gain is α=0.22 and α=0.27, respectively. The circles show the experimental data for the fundamental 8-GHz rf component.

Fig. 3
Fig. 3

Experimentally observed 8-GHz optical pulse trains (a) for 0  Mm, (b) at 10  Mm, and (c) at 28  Mm.

Fig. 4
Fig. 4

Calculated stable pulse and spectrum shapes at 40,000  km when the excess gain α=0.27. The dotted curve is the input pulse. The time scale is normalized to the pulse FWHM, and the frequency is shown in soliton units.

Fig. 5
Fig. 5

Calculated evolution of the stable pulse peak intensity, and duration at FWHM inside the dispersion map after the pulse propagated over 40,000  km for the value of the excess gain α=0.27. The previous evolution of the pulse parameters is shown in Fig.  2 by a dotted curve.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

uz=12ηLF2ut2,

Metrics