Abstract

We show that cascaded second-order nonlinear-optical processes can occur in a convenient polarization-gate beam geometry. Our arrangement uses type  II phase matching, and both individual second-order processes (upconversion and downconversion) are simultaneously phase matched. This geometry can be applied to efficient ultrafast optical switching. With a β-barium borate crystal and lightly focused 250-fs, 7.3-µJ pulses, we achieve a switching efficiency of 15% and an on–off ratio of 3×104 on a pulse-length-limited time scale.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Torner, C. R. Menyuk, and G. I. Stegeman, Opt. Lett. 19, 1615 (1994).
    [Crossref] [PubMed]
  2. A. Stabinis, G. Valiulis, and E. A. Ibragimov, Opt. Commun. 86, 301 (1991).
    [Crossref]
  3. A. Dubietis, G. Valiulis, R. Danielius, and A. Piskarskas, Opt. Lett. 21, 1262 (1996).
    [Crossref] [PubMed]
  4. D. J. Hagan, Z. Wang, G. Stegeman, E. W. Van Stryland, M. Sheik-Bahae, and G. Assanto, Opt. Lett. 19, 1305 (1994).
    [Crossref] [PubMed]
  5. G. Assanto, Z. Wang, D. J. Hagan, and E. W. Van Stryland, Appl. Phys. Lett. 67, 2120 (1995).
    [Crossref]
  6. R. Schiek, J. Opt. Soc. Am. B 10, 1848 (1993).
    [Crossref]
  7. R. Schiek, Y. Baek, G. Krijnen, G. I. Stegeman, I. Baumann, and W. Sohler, Opt. Lett. 21, 940 (1996).
    [Crossref] [PubMed]
  8. A. Kobyakov, U. Peschel, R. Muschall, G. Assanto, V. P. Torchigin, and F. Lederer, Opt. Lett. 20, 1686 (1995).
    [Crossref]
  9. L. Lefort and A. Barthelemy, Opt. Lett. 20, 1749 (1995).
    [Crossref]
  10. G. Assanto, I. Torelli, and S. Trillo, Opt. Lett. 19, 1720 (1994).
    [Crossref] [PubMed]
  11. R. Danielius, P. Di Trapani, A. Dubietis, A. Piskarskas, D. Podenas, and G. F. Banfi, Opt. Lett. 18, 574 (1993).
    [Crossref]
  12. T. Kaino, M. Asobe, S. Tomaru, T. Kurihara, and T. Kanamori, NTT Rev. 7, 47 (1995).
  13. K. Tajima, S. Nakamura, and Y. Sugimoto, Optoelectron. Dev. Technol. 10, 505 (1995).
  14. K. W. DeLong, R. Trebino, and D. J. Kane, J. Opt. Soc. Am. B 11, 1595 (1994).
    [Crossref]

1996 (2)

1995 (5)

A. Kobyakov, U. Peschel, R. Muschall, G. Assanto, V. P. Torchigin, and F. Lederer, Opt. Lett. 20, 1686 (1995).
[Crossref]

L. Lefort and A. Barthelemy, Opt. Lett. 20, 1749 (1995).
[Crossref]

G. Assanto, Z. Wang, D. J. Hagan, and E. W. Van Stryland, Appl. Phys. Lett. 67, 2120 (1995).
[Crossref]

T. Kaino, M. Asobe, S. Tomaru, T. Kurihara, and T. Kanamori, NTT Rev. 7, 47 (1995).

K. Tajima, S. Nakamura, and Y. Sugimoto, Optoelectron. Dev. Technol. 10, 505 (1995).

1994 (4)

1993 (2)

1991 (1)

A. Stabinis, G. Valiulis, and E. A. Ibragimov, Opt. Commun. 86, 301 (1991).
[Crossref]

Asobe, M.

T. Kaino, M. Asobe, S. Tomaru, T. Kurihara, and T. Kanamori, NTT Rev. 7, 47 (1995).

Assanto, G.

Baek, Y.

Banfi, G. F.

Barthelemy, A.

Baumann, I.

Danielius, R.

DeLong, K. W.

Di Trapani, P.

Dubietis, A.

Hagan, D. J.

Ibragimov, E. A.

A. Stabinis, G. Valiulis, and E. A. Ibragimov, Opt. Commun. 86, 301 (1991).
[Crossref]

Kaino, T.

T. Kaino, M. Asobe, S. Tomaru, T. Kurihara, and T. Kanamori, NTT Rev. 7, 47 (1995).

Kanamori, T.

T. Kaino, M. Asobe, S. Tomaru, T. Kurihara, and T. Kanamori, NTT Rev. 7, 47 (1995).

Kane, D. J.

Kobyakov, A.

Krijnen, G.

Kurihara, T.

T. Kaino, M. Asobe, S. Tomaru, T. Kurihara, and T. Kanamori, NTT Rev. 7, 47 (1995).

Lederer, F.

Lefort, L.

Menyuk, C. R.

Muschall, R.

Nakamura, S.

K. Tajima, S. Nakamura, and Y. Sugimoto, Optoelectron. Dev. Technol. 10, 505 (1995).

Peschel, U.

Piskarskas, A.

Podenas, D.

Schiek, R.

Sheik-Bahae, M.

Sohler, W.

Stabinis, A.

A. Stabinis, G. Valiulis, and E. A. Ibragimov, Opt. Commun. 86, 301 (1991).
[Crossref]

Stegeman, G.

Stegeman, G. I.

Sugimoto, Y.

K. Tajima, S. Nakamura, and Y. Sugimoto, Optoelectron. Dev. Technol. 10, 505 (1995).

Tajima, K.

K. Tajima, S. Nakamura, and Y. Sugimoto, Optoelectron. Dev. Technol. 10, 505 (1995).

Tomaru, S.

T. Kaino, M. Asobe, S. Tomaru, T. Kurihara, and T. Kanamori, NTT Rev. 7, 47 (1995).

Torchigin, V. P.

Torelli, I.

Torner, L.

Trebino, R.

Trillo, S.

Valiulis, G.

A. Dubietis, G. Valiulis, R. Danielius, and A. Piskarskas, Opt. Lett. 21, 1262 (1996).
[Crossref] [PubMed]

A. Stabinis, G. Valiulis, and E. A. Ibragimov, Opt. Commun. 86, 301 (1991).
[Crossref]

Van Stryland, E. W.

Wang, Z.

Appl. Phys. Lett. (1)

G. Assanto, Z. Wang, D. J. Hagan, and E. W. Van Stryland, Appl. Phys. Lett. 67, 2120 (1995).
[Crossref]

J. Opt. Soc. Am. B (2)

NTT Rev. (1)

T. Kaino, M. Asobe, S. Tomaru, T. Kurihara, and T. Kanamori, NTT Rev. 7, 47 (1995).

Opt. Commun. (1)

A. Stabinis, G. Valiulis, and E. A. Ibragimov, Opt. Commun. 86, 301 (1991).
[Crossref]

Opt. Lett. (8)

Optoelectron. Dev. Technol. (1)

K. Tajima, S. Nakamura, and Y. Sugimoto, Optoelectron. Dev. Technol. 10, 505 (1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic setup for optical switching with a cascaded second-order nonlinearity. SHG, second-harmonic generation.

Fig. 2
Fig. 2

Schematic of the two second-order processes contributing to the switching process. SHG, second-harmonic generation.

Fig. 3
Fig. 3

Experimental arrangement for optical switching using cascaded second-order nonlinearities. The incoming laser beam is split into probe and gate beams. With a λ/2 wave plate, the polarization of the gate beam is rotated by 45  deg, and both beams are lightly focused and crossed in the type  II BBO crystal, placed between crossed polarizers. Cascaded second-order processes yield a signal pulse collinear to the probe pulse but with the opposite polarization, which is then passed by the second polarizer.

Fig. 4
Fig. 4

Conversion efficiency η versus peak intensity of the gate beam for 0.5- and 1.0-mm-long BBO crystals. The solid lines show the theoretically expected dependence of η on the square of the gate intensity.

Fig. 5
Fig. 5

Conversion efficiency η versus length L of the BBO crystal for different peak intensities of the gate beam. The solid lines show the theoretically expected L4 dependence.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

dE2dz=κdeffEpEgy,
dEsdz=κdeffE2Egh*,
d2Esdz2=(κdeff)2EpEgvEgh*2αdeff2,
Es(z)=αdeff2z2
Is(z=L)deff4L4,

Metrics