Abstract

The influence of higher-order phase dispersion on the pulse generation in femtosecond Kerr-lens mode-locked lasers for small net group-velocity dispersion is numerically analyzed. Depending on the third- and the fourth-order dispersion, we obtain the formation of spectral sidebands phase matched with the principal spectrum. At a relatively large amount of fourth-order dispersion pulse splitting arises, which leads to a quasi-steady-state multipulse operation regime of the Kerr-lens mode-locked laser.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, IEEE J. Quantum Electron. 30, 1100 (1994).
    [CrossRef]
  2. J. Zhou, G. Taft, C. P. Huang, M. M. Murnane, H. C. Kapteyn, and I. P. Christov, Opt. Lett. 19, 1149 (1994).
    [CrossRef] [PubMed]
  3. A. Stingl, Ch. Spielmann, F. Krausz, and R. Szipöcs, Opt. Lett. 19, 204 (1994).
    [CrossRef]
  4. A. Kasper and K. J. Witte, Opt. Lett. 21, 360 (1996).
    [CrossRef] [PubMed]
  5. F. Salin, J. Squier, and M. Piche, Opt. Lett. 16, 1674 (1991).
    [CrossRef] [PubMed]
  6. J. Herrmann, J. Opt. Soc. Am. B 11, 498 (1994).
    [CrossRef]
  7. S. Gatz and J. Herrmann, Opt. Lett. 20, 825 (1995).
    [CrossRef] [PubMed]
  8. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, J. Opt. Soc. Am. B 8, 2068 (1991).
    [CrossRef]
  9. T. Brabec, Ch. Spielmann, and F. Krausz, Opt. Lett. 17, 748 (1992).
    [CrossRef] [PubMed]
  10. H. A. Haus, J. D. Moores, and L. E. Nelson, Opt. Lett. 18, 51 (1993).
    [CrossRef] [PubMed]
  11. I. P. Christov, M. M. Murnane, H. C. Kapteyn, J. Zhou, and C. P. Huang, Opt. Lett. 19, 1465 (1994).
    [CrossRef] [PubMed]
  12. J. N. Elgin, Opt. Lett. 17, 1409 (1992).
    [CrossRef]
  13. I. N. Duling, ed., Compact Sources of Ultrashort Pulses, 1st ed. (Cambridge U. Press, Cambridge, 1995), Chap. 4.2.3, p.  157.

1996 (1)

1995 (1)

1994 (5)

1993 (1)

1992 (2)

1991 (2)

Brabec, T.

C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, IEEE J. Quantum Electron. 30, 1100 (1994).
[CrossRef]

T. Brabec, Ch. Spielmann, and F. Krausz, Opt. Lett. 17, 748 (1992).
[CrossRef] [PubMed]

Christov, I. P.

Curley, P. F.

C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, IEEE J. Quantum Electron. 30, 1100 (1994).
[CrossRef]

Elgin, J. N.

Fujimoto, J. G.

Gatz, S.

Haus, H. A.

Herrmann, J.

Huang, C. P.

Ippen, E. P.

Kapteyn, H. C.

Kasper, A.

Krausz, F.

Moores, J. D.

Murnane, M. M.

Nelson, L. E.

Piche, M.

Salin, F.

Spielmann, C.

C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, IEEE J. Quantum Electron. 30, 1100 (1994).
[CrossRef]

Spielmann, Ch.

Squier, J.

Stingl, A.

Szipöcs, R.

Taft, G.

Witte, K. J.

Zhou, J.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Steady-state pulse spectrum (solid curves) and phase (dashed curves) versus wavelength for the laser parameters D2g=10, T2=2.5fs, λ21=(2πc)/ω21=790nm, U21=10nJ, κ=10-7W-1, Γ=0.07, and Δ=0. (a) μ=2, D2=-10.15, D3 as defined in the figure, and D4=0.5. The FWHM pulse duration varies between 9.2  fs for D3=0.3 and 18.2  fs for D3=2.0. (b) μ=1, D2=-10.25, D3=0.5, and D4 as defined in the figure. The FWHM pulse duration varies between 13.0  fs for D4=1.0, 23.0  fs for D4=3.0.

Fig. 2
Fig. 2

Quasi-steady-state (a) spectral and (b) temporal pulse shapes in the double-pulse regime for μ=2, D2=-10.25, D3=0.1, D4=2.7, and the other laser parameters given in Fig.  1.

Fig. 3
Fig. 3

Evolution of the temporal pulse shape depending on the round-trip number k up to k=25,000 with a line spacing of 200 round trips for the laser parameters shown in Fig.  2.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

zψk(η)=gk-ηexp-η-ηL21ψk(η)dη-iκ|ψk(η)|2ψk(η)+iD2g2η2ψk(η),

Metrics