Abstract

The spatial characterization of light beams given in terms of intensity moments is extended to partially polarized beams by means of a generalization of the Stokes–Mueller formalism. A simple classification scheme of partially polarized fields is proposed, and laws of propagation through nonpolarizing and polarizing optical systems are provided. Some invariant parameters are also investigated.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Lavi, R. Prochaska, and E. Keren, Appl. Opt. 27, 3696 (1988).
    [CrossRef] [PubMed]
  2. M. J. Bastiaans, Optik 82, 173 (1989).
  3. A. E. Siegman, Proc. SPIE 1224, 2 (1990).
    [CrossRef]
  4. J. Serna, R. Martínez-Herrero, and P. M. Mejías, J. Opt. Soc. Am. A 8, 1096 (1991).
    [CrossRef]
  5. H. Weber, Opt. Quantum Electron. 24, 1027 (1992).
    [CrossRef]
  6. S. Simon, E. C. G. Sudarschan, and N. Mukunda, Appl. Opt. 26, 1589 (1987).
    [CrossRef] [PubMed]
  7. Q. Lü, S. Dong, and H. Weber, Opt. Quantum Electron. 27, 777 (1995).
    [CrossRef]

1995 (1)

Q. Lü, S. Dong, and H. Weber, Opt. Quantum Electron. 27, 777 (1995).
[CrossRef]

1992 (1)

H. Weber, Opt. Quantum Electron. 24, 1027 (1992).
[CrossRef]

1991 (1)

J. Serna, R. Martínez-Herrero, and P. M. Mejías, J. Opt. Soc. Am. A 8, 1096 (1991).
[CrossRef]

1990 (1)

A. E. Siegman, Proc. SPIE 1224, 2 (1990).
[CrossRef]

1989 (1)

M. J. Bastiaans, Optik 82, 173 (1989).

1988 (1)

1987 (1)

Bastiaans, M. J.

M. J. Bastiaans, Optik 82, 173 (1989).

Dong, S.

Q. Lü, S. Dong, and H. Weber, Opt. Quantum Electron. 27, 777 (1995).
[CrossRef]

Keren, E.

Lavi, S.

Lü, Q.

Q. Lü, S. Dong, and H. Weber, Opt. Quantum Electron. 27, 777 (1995).
[CrossRef]

Martínez-Herrero, R.

J. Serna, R. Martínez-Herrero, and P. M. Mejías, J. Opt. Soc. Am. A 8, 1096 (1991).
[CrossRef]

Mejías, P. M.

J. Serna, R. Martínez-Herrero, and P. M. Mejías, J. Opt. Soc. Am. A 8, 1096 (1991).
[CrossRef]

Mukunda, N.

Prochaska, R.

Serna, J.

J. Serna, R. Martínez-Herrero, and P. M. Mejías, J. Opt. Soc. Am. A 8, 1096 (1991).
[CrossRef]

Siegman, A. E.

A. E. Siegman, Proc. SPIE 1224, 2 (1990).
[CrossRef]

Simon, S.

Sudarschan, E. C. G.

Weber, H.

Q. Lü, S. Dong, and H. Weber, Opt. Quantum Electron. 27, 777 (1995).
[CrossRef]

H. Weber, Opt. Quantum Electron. 24, 1027 (1992).
[CrossRef]

Appl. Opt. (2)

J. Opt. Soc. Am. A (1)

J. Serna, R. Martínez-Herrero, and P. M. Mejías, J. Opt. Soc. Am. A 8, 1096 (1991).
[CrossRef]

Opt. Quantum Electron. (2)

H. Weber, Opt. Quantum Electron. 24, 1027 (1992).
[CrossRef]

Q. Lü, S. Dong, and H. Weber, Opt. Quantum Electron. 27, 777 (1995).
[CrossRef]

Optik (1)

M. J. Bastiaans, Optik 82, 173 (1989).

Proc. SPIE (1)

A. E. Siegman, Proc. SPIE 1224, 2 (1990).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (40)

Equations on this page are rendered with MathJax. Learn more.

E(r,z)=[Es(r,z),Ep(r,z)],
H(r,η,z)=1k02E+(r+s2,z)E(r-s2,z)¯×exp(isη)ds,
E+=Es*Ep*
I(r,z)=k02trHdη,
J(η)=k02trHdr
Ho(r, η)=Hi(Ar+Bη, Cr+Dη),
R(x,y,u,v)=(r,η).
S0=RtRtrH(r,η)drdη,
S1=RtRtr[σ1H(r,η)]drdη,
S2=RtRtr[σ2H(r,η)]drdη,
S3=RtRtr[σ3H(r,η)]drdη,
σ1=100-1σ2=0110σ3=0i-i0
S0=W2ΨΨtΦ2
W2=I0x2xyxyy2
Ψ=I0xuxvyuyv
Φ2=I0u2uvuvv2
αβ=14π2I0αβtrHdrdη=αβss+αβpp,
αβij=14π2I0αβHijdrdη,i,j=s,p.
Q3d=1k02[trW2trΦ2-(trΨ)2]I02
J=1k02tr(W2Φ2-ΨΨt)I02
(trS0)2(trS1)2+(trS2)2+(trS3)2,
s02s12+s22+s32,
trS1=r2ss-r2pp+η2ss-η2pp,
trS2=2 Re(r2sp+η2sp),
trS3=2 Im(r2sp+η2sp),
|r2sp+η2sp|2r2ssr2pp+η2ssη2pp+2(r2ssr2ppη2ssη2pp)1/2r2ssr2pp+η2ssη2pp+r2ssη2pp+r2ppη2ss.
(trS1)2+(trS2)2+(trS3)2=(r2ss)2+(r2pp)2+(η2ss)2+(η2pp)2-2r2ssr2pp+2r2ssη2ss-2r2ssη2pp-2r2ppη2ss+2r2ppη2pp-2η2ssη2pp+4|r2sp+η2sp|2(r2ss)2+(r2pp)2+(η2ss)2+(η2pp)2+2r2ssr2pp+2r2ssη2ss+2r2ssη2pp+2r2ppη2ss+2r2ppη2pp+2η2ssη2pp=(trS0)2.Q.E.D.
Ep(r)=αEs(r),
(trS0)2=(trS1)2+(trS2)2+(trS3)2.
trS1=trS2=trS3=0.
(trS0)2>(trS1)2+(trS2)2+(trS3)2.
Sn=MSnMt,n=0, 1, 2, 3.
S1=S2=S3=0,
αβss=αβpp,α,β=x,y,u,v,
αβsp=0.
Sn=m=03LnmSm,n,m=0, 1, 2, 3.
S0=m=03L0mSm.
L01=L02=L03=0,
S1=S2=S3=0,
S0=L00S0.

Metrics