Abstract

We propose and experimentally demonstrate the use of metal-covered lamellar relief gratings as a polarizing beam splitter operating at a single wavelength near Littrow incidence. We report the characteristics of a grating produced by holography and reactive ion etching that was calculated for operation as beam splitter at λ=633  nm (for a He–Ne laser).

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1980).
  2. R. Petit, Electromagnetic Theory of Gratings, Vol. 22 of Topics in Current Physics (Springer-Verlag, Berlin, 1980).
    [Crossref]
  3. H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
    [Crossref]
  4. M. G. Moharam and T. K. Gaylord, J. Opt. Soc. Am. 73, 1105 (1983).
    [Crossref]
  5. R. D. Rallison and S. R. Schicker, Proc. SPIE 46, 1663 (1992).
  6. S. Habraken, O. Michaux, Y. Renotte, and Y. Lion, Opt. Lett. 20, 2348 (1995).
    [Crossref]
  7. M. Schimitz, R. Bräuer, and O. Bryngdahl, Opt. Lett. 20, 1830 (1995).
    [Crossref]
  8. J. L. Roumiguieres, Opt. Commun. 19, 76 (1976).
    [Crossref]
  9. K. Knop, Opt. Commun. 26, 281 (1978).
    [Crossref]
  10. J. Frejlich, L. Cescato, and G. F. Mendes, Appl. Opt. 27, 1967 (1988).
    [Crossref] [PubMed]

1995 (2)

1992 (1)

R. D. Rallison and S. R. Schicker, Proc. SPIE 46, 1663 (1992).

1988 (1)

1983 (1)

1978 (1)

K. Knop, Opt. Commun. 26, 281 (1978).
[Crossref]

1976 (1)

J. L. Roumiguieres, Opt. Commun. 19, 76 (1976).
[Crossref]

1969 (1)

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
[Crossref]

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1980).

Bräuer, R.

Bryngdahl, O.

Cescato, L.

Frejlich, J.

Gaylord, T. K.

Habraken, S.

Knop, K.

K. Knop, Opt. Commun. 26, 281 (1978).
[Crossref]

Kogelnik, H.

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
[Crossref]

Lion, Y.

Mendes, G. F.

Michaux, O.

Moharam, M. G.

Petit, R.

R. Petit, Electromagnetic Theory of Gratings, Vol. 22 of Topics in Current Physics (Springer-Verlag, Berlin, 1980).
[Crossref]

Rallison, R. D.

R. D. Rallison and S. R. Schicker, Proc. SPIE 46, 1663 (1992).

Renotte, Y.

Roumiguieres, J. L.

J. L. Roumiguieres, Opt. Commun. 19, 76 (1976).
[Crossref]

Schicker, S. R.

R. D. Rallison and S. R. Schicker, Proc. SPIE 46, 1663 (1992).

Schimitz, M.

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1980).

Appl. Opt. (1)

Bell Syst. Tech. J. (1)

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
[Crossref]

J. Opt. Soc. Am. (1)

Opt. Commun. (2)

J. L. Roumiguieres, Opt. Commun. 19, 76 (1976).
[Crossref]

K. Knop, Opt. Commun. 26, 281 (1978).
[Crossref]

Opt. Lett. (2)

Proc. SPIE (1)

R. D. Rallison and S. R. Schicker, Proc. SPIE 46, 1663 (1992).

Other (2)

M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1980).

R. Petit, Electromagnetic Theory of Gratings, Vol. 22 of Topics in Current Physics (Springer-Verlag, Berlin, 1980).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the proposed reflection polarizer beam splitter. The unpolarized light, incident in the metal–covered gating at the Bragg angle, splits into two directions: the -1 diffracted order and the reflected (0) order. The -1 diffracted order is linearly polarized at the TE direction (electric vector parallel to the grating lines), and the reflection (0 diffracted order) is linearly polarized at the TM direction.

Fig. 2
Fig. 2

Diffraction spectrum of the -1 diffracted order for the TE and TM polarization for incidence in the grating under the Littrow condition. The spectrum was obtained with a spectrometer that finds the Bragg angle for each incident wavelength.

Fig. 3
Fig. 3

Scanning electron microscope photograph of the cross section of the grating recorded in InP, showing the spectrum shown in Fig.  2.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

θB=sin-1(λ/2Λ).

Metrics