Abstract

We report a developing technique capable of making continuous time-series measurements of naturally occurring minor-species concentrations. The high repetition rate of the mode-locked laser used in this technique allows for the study of transient combustion events, such as turbulence, and their effect on minor-species concentrations. The technique is applied to make CH fluorescence time-series measurements and to calculate power spectral densities in a turbulent nonpremixed flame. To our knowledge, the reported time series represents the first such measurement for a naturally occurring minor species in a turbulent flame.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. C. Drake and R. W. Pitz, Exp. Fluids 3, 283 (1985).
  2. M. S. Klassen, B. D. Thompson, T. A. Reichardt, G. B. King, and N. M. Laurendeau, Combust. Sci. Technol. 97, 391 (1994).
    [CrossRef]
  3. T. A. Reichardt, M. S. Klassen, G. B. King, and N. M. Laurendeau, Appl. Opt. 35, 2125 (1996).
    [CrossRef] [PubMed]
  4. T. S. Norton and K. C. Smyth, Combust. Sci. Technol. 76, 1 (1991).
    [CrossRef]
  5. R. J. Cattolica, D. Stepowski, D. Puechberty, and M. Cottereau, J. Quant. Spectrosc. Radiat. Transfer 32, 363 (1984).
    [CrossRef]
  6. N. H. Wrobel and N. H. Pratt, Seventeenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1978), p. 957.
  7. H. Tennekes and J. L. Lumley, A First Course in Turbulence (MIT Press, Cambridge, Mass., 1972), p. 248.
  8. D. R. Dowling and P. E. Dimotakis, J. Fluid Mech. 218, 109 (1990).
    [CrossRef]

1996 (1)

1994 (1)

M. S. Klassen, B. D. Thompson, T. A. Reichardt, G. B. King, and N. M. Laurendeau, Combust. Sci. Technol. 97, 391 (1994).
[CrossRef]

1991 (1)

T. S. Norton and K. C. Smyth, Combust. Sci. Technol. 76, 1 (1991).
[CrossRef]

1990 (1)

D. R. Dowling and P. E. Dimotakis, J. Fluid Mech. 218, 109 (1990).
[CrossRef]

1985 (1)

M. C. Drake and R. W. Pitz, Exp. Fluids 3, 283 (1985).

1984 (1)

R. J. Cattolica, D. Stepowski, D. Puechberty, and M. Cottereau, J. Quant. Spectrosc. Radiat. Transfer 32, 363 (1984).
[CrossRef]

Cattolica, R. J.

R. J. Cattolica, D. Stepowski, D. Puechberty, and M. Cottereau, J. Quant. Spectrosc. Radiat. Transfer 32, 363 (1984).
[CrossRef]

Cottereau, M.

R. J. Cattolica, D. Stepowski, D. Puechberty, and M. Cottereau, J. Quant. Spectrosc. Radiat. Transfer 32, 363 (1984).
[CrossRef]

Dimotakis, P. E.

D. R. Dowling and P. E. Dimotakis, J. Fluid Mech. 218, 109 (1990).
[CrossRef]

Dowling, D. R.

D. R. Dowling and P. E. Dimotakis, J. Fluid Mech. 218, 109 (1990).
[CrossRef]

Drake, M. C.

M. C. Drake and R. W. Pitz, Exp. Fluids 3, 283 (1985).

King, G. B.

T. A. Reichardt, M. S. Klassen, G. B. King, and N. M. Laurendeau, Appl. Opt. 35, 2125 (1996).
[CrossRef] [PubMed]

M. S. Klassen, B. D. Thompson, T. A. Reichardt, G. B. King, and N. M. Laurendeau, Combust. Sci. Technol. 97, 391 (1994).
[CrossRef]

Klassen, M. S.

T. A. Reichardt, M. S. Klassen, G. B. King, and N. M. Laurendeau, Appl. Opt. 35, 2125 (1996).
[CrossRef] [PubMed]

M. S. Klassen, B. D. Thompson, T. A. Reichardt, G. B. King, and N. M. Laurendeau, Combust. Sci. Technol. 97, 391 (1994).
[CrossRef]

Laurendeau, N. M.

T. A. Reichardt, M. S. Klassen, G. B. King, and N. M. Laurendeau, Appl. Opt. 35, 2125 (1996).
[CrossRef] [PubMed]

M. S. Klassen, B. D. Thompson, T. A. Reichardt, G. B. King, and N. M. Laurendeau, Combust. Sci. Technol. 97, 391 (1994).
[CrossRef]

Lumley, J. L.

H. Tennekes and J. L. Lumley, A First Course in Turbulence (MIT Press, Cambridge, Mass., 1972), p. 248.

Norton, T. S.

T. S. Norton and K. C. Smyth, Combust. Sci. Technol. 76, 1 (1991).
[CrossRef]

Pitz, R. W.

M. C. Drake and R. W. Pitz, Exp. Fluids 3, 283 (1985).

Pratt, N. H.

N. H. Wrobel and N. H. Pratt, Seventeenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1978), p. 957.

Puechberty, D.

R. J. Cattolica, D. Stepowski, D. Puechberty, and M. Cottereau, J. Quant. Spectrosc. Radiat. Transfer 32, 363 (1984).
[CrossRef]

Reichardt, T. A.

T. A. Reichardt, M. S. Klassen, G. B. King, and N. M. Laurendeau, Appl. Opt. 35, 2125 (1996).
[CrossRef] [PubMed]

M. S. Klassen, B. D. Thompson, T. A. Reichardt, G. B. King, and N. M. Laurendeau, Combust. Sci. Technol. 97, 391 (1994).
[CrossRef]

Smyth, K. C.

T. S. Norton and K. C. Smyth, Combust. Sci. Technol. 76, 1 (1991).
[CrossRef]

Stepowski, D.

R. J. Cattolica, D. Stepowski, D. Puechberty, and M. Cottereau, J. Quant. Spectrosc. Radiat. Transfer 32, 363 (1984).
[CrossRef]

Tennekes, H.

H. Tennekes and J. L. Lumley, A First Course in Turbulence (MIT Press, Cambridge, Mass., 1972), p. 248.

Thompson, B. D.

M. S. Klassen, B. D. Thompson, T. A. Reichardt, G. B. King, and N. M. Laurendeau, Combust. Sci. Technol. 97, 391 (1994).
[CrossRef]

Wrobel, N. H.

N. H. Wrobel and N. H. Pratt, Seventeenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1978), p. 957.

Appl. Opt. (1)

Combust. Sci. Technol. (2)

T. S. Norton and K. C. Smyth, Combust. Sci. Technol. 76, 1 (1991).
[CrossRef]

M. S. Klassen, B. D. Thompson, T. A. Reichardt, G. B. King, and N. M. Laurendeau, Combust. Sci. Technol. 97, 391 (1994).
[CrossRef]

Exp. Fluids (1)

M. C. Drake and R. W. Pitz, Exp. Fluids 3, 283 (1985).

J. Fluid Mech. (1)

D. R. Dowling and P. E. Dimotakis, J. Fluid Mech. 218, 109 (1990).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

R. J. Cattolica, D. Stepowski, D. Puechberty, and M. Cottereau, J. Quant. Spectrosc. Radiat. Transfer 32, 363 (1984).
[CrossRef]

Other (2)

N. H. Wrobel and N. H. Pratt, Seventeenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1978), p. 957.

H. Tennekes and J. L. Lumley, A First Course in Turbulence (MIT Press, Cambridge, Mass., 1972), p. 248.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup used for the time-series measurements of CH: P, polarization rotator; C, chopper; M, 0.25-m monochromator; R, radiometer.

Fig. 2
Fig. 2

Mean CH signal measured in a laminar CH4/air nonpremixed flame. Each data point represents the average of 1200 measurements. Curves are added to the measured data to aid the eye.

Fig. 3
Fig. 3

Mean CH signal measured in a turbulent CH4/air nonpremixed flame. Each data point represents the average of 12,000 measurements.

Fig. 4
Fig. 4

Representative time series for the laminar and the turbulent CH4/air flames, showing 1  s of continuous data. The measurements were made at the radial location corresponding to the peak mean CH signal in Figs. 2 and 3 (laminar, x/D=3; turbulent, x/D=1).

Fig. 5
Fig. 5

Power spectra for the laminar and the turbulent CH4/air flames. The measurement locations are the same as those in Fig. 4.

Metrics