Abstract

We report quasi-phase-matched singly resonant optical parametric oscillation in electric-field-poled lithium niobate waveguides. Parametric gains as high as 250%/W, an oscillation threshold of 1.6  W (peak), idler output powers of 220  mW, and a tuning range of 1180–2080  nm for pump wavelengths of 756–772  nm have been observed. Pump depletion is limited to 40% because of the multiple launched transverse modes at the pump wavelength. We predict that fully optimized waveguide singly resonant oscillators can have thresholds of 100 mW, accessible to cw diode pumping.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See the feature on parametric devices, J. Opt. Soc. Am. B 12, 2084–2320 (1995).
  2. P. Baldi, P. Aschieri, S. Nouh, M. De Micheli, D. Ostrowsky, D. Delacourt, and M. Papuchon, IEEE J. Quantum Electron. 31, 997 (1995).
    [Crossref]
  3. K. Kintaka, M. Fujimura, T. Suhara, and H. Nishihara, J. Lightwave Technol. 14, 462 (1996).
    [Crossref]
  4. M. A. Arbore, M. H. Chou, and M. M. Fejer, in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), p. 120.
  5. W. Sohler and H. Suche, in Digest of the Third International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, D.C., 1981), p. 89.
  6. H. Suche and W. Sohler, in Integrated and Guided-Wave Optics, Vol. 5 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), p. 176.
  7. W. Sohler and H. Suche, Appl. Phys. Lett. 37, 255 (1980).
    [Crossref]
  8. M. L. Bortz, M. A. Arbore, and M. M. Fejer, Opt. Lett. 20, 49 (1995).
    [Crossref] [PubMed]
  9. G. P. Bava, I. Montrosset, W. Sohler, and H. Suche, IEEE J. Quantum Electron. QE-23, 42 (1987).
    [Crossref]
  10. J. E. Bjorkholm, IEEE J. Quantum Electron. QE-7, 109 (1971).
    [Crossref]
  11. M. L. Bortz and M. M. Fejer, Opt. Lett. 16, 1844 (1991)M. L. Bortz, L. A. Eyres, and M. M. Fejer, Appl. Phys. Lett. 62, 2012 (1993).
    [Crossref] [PubMed]
  12. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, J. Opt. Soc. Am. B 12, 2102 (1995)G. D. Miller, R. G. Batchko, M. M. Fejer, and R. L. Byer, Proc. SPIE 2700, 34 (1996).
    [Crossref]
  13. R. Regener and W. Sohler, Appl. Phys. B 36, 143 (1985).
    [Crossref]
  14. M. H. Chou, M. A. Arbore, and M. M. Fejer, Opt. Lett. 21, 794 (1996).
    [Crossref] [PubMed]
  15. G. A. Bogert and D. T. Moser, IEEE Photon. Technol. Lett. 12, 632 (1990).
    [Crossref]

1996 (2)

K. Kintaka, M. Fujimura, T. Suhara, and H. Nishihara, J. Lightwave Technol. 14, 462 (1996).
[Crossref]

M. H. Chou, M. A. Arbore, and M. M. Fejer, Opt. Lett. 21, 794 (1996).
[Crossref] [PubMed]

1995 (4)

1991 (1)

1990 (1)

G. A. Bogert and D. T. Moser, IEEE Photon. Technol. Lett. 12, 632 (1990).
[Crossref]

1987 (1)

G. P. Bava, I. Montrosset, W. Sohler, and H. Suche, IEEE J. Quantum Electron. QE-23, 42 (1987).
[Crossref]

1985 (1)

R. Regener and W. Sohler, Appl. Phys. B 36, 143 (1985).
[Crossref]

1980 (1)

W. Sohler and H. Suche, Appl. Phys. Lett. 37, 255 (1980).
[Crossref]

1971 (1)

J. E. Bjorkholm, IEEE J. Quantum Electron. QE-7, 109 (1971).
[Crossref]

Arbore, M. A.

M. H. Chou, M. A. Arbore, and M. M. Fejer, Opt. Lett. 21, 794 (1996).
[Crossref] [PubMed]

M. L. Bortz, M. A. Arbore, and M. M. Fejer, Opt. Lett. 20, 49 (1995).
[Crossref] [PubMed]

M. A. Arbore, M. H. Chou, and M. M. Fejer, in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), p. 120.

Aschieri, P.

P. Baldi, P. Aschieri, S. Nouh, M. De Micheli, D. Ostrowsky, D. Delacourt, and M. Papuchon, IEEE J. Quantum Electron. 31, 997 (1995).
[Crossref]

Baldi, P.

P. Baldi, P. Aschieri, S. Nouh, M. De Micheli, D. Ostrowsky, D. Delacourt, and M. Papuchon, IEEE J. Quantum Electron. 31, 997 (1995).
[Crossref]

Bava, G. P.

G. P. Bava, I. Montrosset, W. Sohler, and H. Suche, IEEE J. Quantum Electron. QE-23, 42 (1987).
[Crossref]

Bjorkholm, J. E.

J. E. Bjorkholm, IEEE J. Quantum Electron. QE-7, 109 (1971).
[Crossref]

Bogert, G. A.

G. A. Bogert and D. T. Moser, IEEE Photon. Technol. Lett. 12, 632 (1990).
[Crossref]

Bortz, M. L.

Bosenberg, W. R.

Byer, R. L.

Chou, M. H.

M. H. Chou, M. A. Arbore, and M. M. Fejer, Opt. Lett. 21, 794 (1996).
[Crossref] [PubMed]

M. A. Arbore, M. H. Chou, and M. M. Fejer, in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), p. 120.

De Micheli, M.

P. Baldi, P. Aschieri, S. Nouh, M. De Micheli, D. Ostrowsky, D. Delacourt, and M. Papuchon, IEEE J. Quantum Electron. 31, 997 (1995).
[Crossref]

Delacourt, D.

P. Baldi, P. Aschieri, S. Nouh, M. De Micheli, D. Ostrowsky, D. Delacourt, and M. Papuchon, IEEE J. Quantum Electron. 31, 997 (1995).
[Crossref]

Eckardt, R. C.

Fejer, M. M.

Fujimura, M.

K. Kintaka, M. Fujimura, T. Suhara, and H. Nishihara, J. Lightwave Technol. 14, 462 (1996).
[Crossref]

Kintaka, K.

K. Kintaka, M. Fujimura, T. Suhara, and H. Nishihara, J. Lightwave Technol. 14, 462 (1996).
[Crossref]

Montrosset, I.

G. P. Bava, I. Montrosset, W. Sohler, and H. Suche, IEEE J. Quantum Electron. QE-23, 42 (1987).
[Crossref]

Moser, D. T.

G. A. Bogert and D. T. Moser, IEEE Photon. Technol. Lett. 12, 632 (1990).
[Crossref]

Myers, L. E.

Nishihara, H.

K. Kintaka, M. Fujimura, T. Suhara, and H. Nishihara, J. Lightwave Technol. 14, 462 (1996).
[Crossref]

Nouh, S.

P. Baldi, P. Aschieri, S. Nouh, M. De Micheli, D. Ostrowsky, D. Delacourt, and M. Papuchon, IEEE J. Quantum Electron. 31, 997 (1995).
[Crossref]

Ostrowsky, D.

P. Baldi, P. Aschieri, S. Nouh, M. De Micheli, D. Ostrowsky, D. Delacourt, and M. Papuchon, IEEE J. Quantum Electron. 31, 997 (1995).
[Crossref]

Papuchon, M.

P. Baldi, P. Aschieri, S. Nouh, M. De Micheli, D. Ostrowsky, D. Delacourt, and M. Papuchon, IEEE J. Quantum Electron. 31, 997 (1995).
[Crossref]

Pierce, J. W.

Regener, R.

R. Regener and W. Sohler, Appl. Phys. B 36, 143 (1985).
[Crossref]

Sohler, W.

G. P. Bava, I. Montrosset, W. Sohler, and H. Suche, IEEE J. Quantum Electron. QE-23, 42 (1987).
[Crossref]

R. Regener and W. Sohler, Appl. Phys. B 36, 143 (1985).
[Crossref]

W. Sohler and H. Suche, Appl. Phys. Lett. 37, 255 (1980).
[Crossref]

H. Suche and W. Sohler, in Integrated and Guided-Wave Optics, Vol. 5 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), p. 176.

W. Sohler and H. Suche, in Digest of the Third International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, D.C., 1981), p. 89.

Suche, H.

G. P. Bava, I. Montrosset, W. Sohler, and H. Suche, IEEE J. Quantum Electron. QE-23, 42 (1987).
[Crossref]

W. Sohler and H. Suche, Appl. Phys. Lett. 37, 255 (1980).
[Crossref]

W. Sohler and H. Suche, in Digest of the Third International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, D.C., 1981), p. 89.

H. Suche and W. Sohler, in Integrated and Guided-Wave Optics, Vol. 5 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), p. 176.

Suhara, T.

K. Kintaka, M. Fujimura, T. Suhara, and H. Nishihara, J. Lightwave Technol. 14, 462 (1996).
[Crossref]

Appl. Phys. B (1)

R. Regener and W. Sohler, Appl. Phys. B 36, 143 (1985).
[Crossref]

Appl. Phys. Lett. (1)

W. Sohler and H. Suche, Appl. Phys. Lett. 37, 255 (1980).
[Crossref]

IEEE J. Quantum Electron. (3)

G. P. Bava, I. Montrosset, W. Sohler, and H. Suche, IEEE J. Quantum Electron. QE-23, 42 (1987).
[Crossref]

J. E. Bjorkholm, IEEE J. Quantum Electron. QE-7, 109 (1971).
[Crossref]

P. Baldi, P. Aschieri, S. Nouh, M. De Micheli, D. Ostrowsky, D. Delacourt, and M. Papuchon, IEEE J. Quantum Electron. 31, 997 (1995).
[Crossref]

IEEE Photon. Technol. Lett. (1)

G. A. Bogert and D. T. Moser, IEEE Photon. Technol. Lett. 12, 632 (1990).
[Crossref]

J. Lightwave Technol. (1)

K. Kintaka, M. Fujimura, T. Suhara, and H. Nishihara, J. Lightwave Technol. 14, 462 (1996).
[Crossref]

J. Opt. Soc. Am. B (2)

Opt. Lett. (3)

Other (3)

M. A. Arbore, M. H. Chou, and M. M. Fejer, in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), p. 120.

W. Sohler and H. Suche, in Digest of the Third International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, D.C., 1981), p. 89.

H. Suche and W. Sohler, in Integrated and Guided-Wave Optics, Vol. 5 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), p. 176.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Single-frequency SHG tuning curve. The peak efficiency is identical to the near-degenerate parametric gain. The solid curve is a fit to sin2(x)/x2.

Fig. 2
Fig. 2

Parametric tuning curve for a waveguide SRO (filled circles). Data near degeneracy (open circles) was measured by SHG and single-pass parametric gain. The solid curve is a theoretical prediction.

Fig. 3
Fig. 3

SRO pump depletion (circles) and output power (triangles) versus peak launched pump power. The curve is a fit to Eq.  (3), giving r=0.42.

Fig. 4
Fig. 4

Relative SRO threshold versus operating wavelength. The filled circles are measured values; the solid and dashed curves are theoretical predictions for the fabricated device and for an alternative design optimized for off-degenerate operation, respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Pth=1rηnorαp1-exp(-αpL)lnQ+Q2-12
Q=1+RsRi exp(-4αL)(Rs+Ri)exp(-2αL)
T=r cos2(Γ)+(1-r), sin2(Γ)/Γ2=Pt/P,

Metrics