Abstract

We describe the design, fabrication, and performance of high-efficiency transmission gratings fabricated in bulk fused silica for use in high-power ultraviolet laser systems. The gratings exhibit a diffraction efficiency of 94% in order m=-1 and a damage threshold greater than 13 J/cm2 for 3-ns pulses at 351  nm. Model calculations and experimental measurements are in good agreement.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. C. Enger and S. K. Case, J. Opt. Soc. Am. 73, 1113 (1983).
    [CrossRef]
  2. M. G. Moharam, T. K. Gaylord, G. T. Sincerbox, H. Werlich, and B. Yung, Appl. Opt. 23, 3214 (1984).
    [CrossRef]
  3. K. Yokomori, Appl. Opt. 23, 2303 (1984).
    [CrossRef]
  4. J. J. Armstrong, M.S. thesis (University of Rochester, Rochester, N.Y., 1993).
  5. M. C. Gupta and S. T. Peng, Appl. Opt. 32, 2911 (1993).
    [CrossRef] [PubMed]
  6. D. E. Tremain and K. K. Mei, J. Opt. Soc. Am. 68, 775 (1978).
    [CrossRef]
  7. L. C. Botten, Opt. Acta 25, 481 (1978).
    [CrossRef]
  8. K. Knop, Appl. Opt. 19, 282 (1978).
  9. R. Petit, ed., Electromagnetic Theory of Gratings (Springer-Verlag, Berlin, 1980).
    [CrossRef]
  10. M. G. Moharam and T. K. Gaylord, J. Opt. Soc. Am. 71, 811 (1981).
    [CrossRef]
  11. S. T. Peng, J. Opt. Soc. Am. A 6, 1869 (1989).
    [CrossRef]
  12. L. Li, J. Opt. Soc. Am. A 10, 2581 (1993).
    [CrossRef]
  13. L. Li, J. Mod. Opt. 40, 553 (1993).
    [CrossRef]
  14. M. C. Hutley, Sci. Prog. 61, 301 (1972).
  15. R. Boyd, J. Britten, D. Decker, B. W. Shore, B. Stuart, M. D. Perry, and L. Li, Appl. Opt. 34, 1697 (1995).
    [CrossRef] [PubMed]
  16. J. A. Britten, R. D. Boyd, and B. W. Shore, Opt. Eng. 34, 474 (1995).
    [CrossRef]
  17. E. M. Campbell, Fusion Technol. 26, 755 (1994).
  18. J. T. Hunt, K. R. Manes, J. R. Murray, P. A. Renard, R. Sawicki, J. B. Trenholme, and W. Williams, Fusion Technol. 26, 767 (1994).

1995 (2)

1994 (2)

E. M. Campbell, Fusion Technol. 26, 755 (1994).

J. T. Hunt, K. R. Manes, J. R. Murray, P. A. Renard, R. Sawicki, J. B. Trenholme, and W. Williams, Fusion Technol. 26, 767 (1994).

1993 (3)

1989 (1)

1984 (2)

1983 (1)

1981 (1)

1978 (3)

1972 (1)

M. C. Hutley, Sci. Prog. 61, 301 (1972).

Armstrong, J. J.

J. J. Armstrong, M.S. thesis (University of Rochester, Rochester, N.Y., 1993).

Botten, L. C.

L. C. Botten, Opt. Acta 25, 481 (1978).
[CrossRef]

Boyd, R.

Boyd, R. D.

J. A. Britten, R. D. Boyd, and B. W. Shore, Opt. Eng. 34, 474 (1995).
[CrossRef]

Britten, J.

Britten, J. A.

J. A. Britten, R. D. Boyd, and B. W. Shore, Opt. Eng. 34, 474 (1995).
[CrossRef]

Campbell, E. M.

E. M. Campbell, Fusion Technol. 26, 755 (1994).

Case, S. K.

Decker, D.

Enger, R. C.

Gaylord, T. K.

Gupta, M. C.

Hunt, J. T.

J. T. Hunt, K. R. Manes, J. R. Murray, P. A. Renard, R. Sawicki, J. B. Trenholme, and W. Williams, Fusion Technol. 26, 767 (1994).

Hutley, M. C.

M. C. Hutley, Sci. Prog. 61, 301 (1972).

Knop, K.

Li, L.

Manes, K. R.

J. T. Hunt, K. R. Manes, J. R. Murray, P. A. Renard, R. Sawicki, J. B. Trenholme, and W. Williams, Fusion Technol. 26, 767 (1994).

Mei, K. K.

Moharam, M. G.

Murray, J. R.

J. T. Hunt, K. R. Manes, J. R. Murray, P. A. Renard, R. Sawicki, J. B. Trenholme, and W. Williams, Fusion Technol. 26, 767 (1994).

Peng, S. T.

Perry, M. D.

Renard, P. A.

J. T. Hunt, K. R. Manes, J. R. Murray, P. A. Renard, R. Sawicki, J. B. Trenholme, and W. Williams, Fusion Technol. 26, 767 (1994).

Sawicki, R.

J. T. Hunt, K. R. Manes, J. R. Murray, P. A. Renard, R. Sawicki, J. B. Trenholme, and W. Williams, Fusion Technol. 26, 767 (1994).

Shore, B. W.

Sincerbox, G. T.

Stuart, B.

Tremain, D. E.

Trenholme, J. B.

J. T. Hunt, K. R. Manes, J. R. Murray, P. A. Renard, R. Sawicki, J. B. Trenholme, and W. Williams, Fusion Technol. 26, 767 (1994).

Werlich, H.

Williams, W.

J. T. Hunt, K. R. Manes, J. R. Murray, P. A. Renard, R. Sawicki, J. B. Trenholme, and W. Williams, Fusion Technol. 26, 767 (1994).

Yokomori, K.

Yung, B.

Appl. Opt. (5)

Fusion Technol. (2)

E. M. Campbell, Fusion Technol. 26, 755 (1994).

J. T. Hunt, K. R. Manes, J. R. Murray, P. A. Renard, R. Sawicki, J. B. Trenholme, and W. Williams, Fusion Technol. 26, 767 (1994).

J. Mod. Opt. (1)

L. Li, J. Mod. Opt. 40, 553 (1993).
[CrossRef]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (2)

Opt. Acta (1)

L. C. Botten, Opt. Acta 25, 481 (1978).
[CrossRef]

Opt. Eng. (1)

J. A. Britten, R. D. Boyd, and B. W. Shore, Opt. Eng. 34, 474 (1995).
[CrossRef]

Sci. Prog. (1)

M. C. Hutley, Sci. Prog. 61, 301 (1972).

Other (2)

R. Petit, ed., Electromagnetic Theory of Gratings (Springer-Verlag, Berlin, 1980).
[CrossRef]

J. J. Armstrong, M.S. thesis (University of Rochester, Rochester, N.Y., 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Geometry of diffraction used (light is incident from the left, at 30°). AR, antireflection.

Fig. 2
Fig. 2

Left, lamellar groove profile with duty cycle 0.5 and depth 580  nm. Right, theoretical transmission efficiency with λ=351 nm, order -1, and TE polarization as a function of groove depth and duty cycle for a rectangular-profile grating etched into silica (left). The incident angle is 30°, and groove spacing d=350 nm. The peak efficiency (97.6%) occurs for depth 580  nm and duty cycle 0.5.

Fig. 3
Fig. 3

Electron micrograph of a photoresist grating profile with period 350  nm, height 500  nm, and duty cycle 0.45.

Fig. 4
Fig. 4

Electron micrograph of a grating profile etched into bulk fused silica with period 350  nm, height 580  nm, and duty cycle 0.5.

Fig. 5
Fig. 5

Diffraction efficiency [TE theory (), TE experiment (+), TM theory (), TM experiment (×)] as a function of angle for m=-1 order in transmission. Grating period 350  nm, height 580  nm, and duty cycle 0.5.

Metrics