Abstract

The signal-to-noise ratio of the output of an adaptive holographic interferometer (AHI) based on a Bi12TiO20 crystal is investigated. We show experimentally that the sensitivity of an AHI using the non-Bragg orders of diffraction in a thin photorefractive material is more than an order of magnitude greater than that of an AHI employing two-wave mixing in photorefractive volume holograms.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. I. Stepanov, Rep. Prog. Phys. 57, 39 (1994).
    [CrossRef]
  2. T. J. Hall, M. A. Fiddy, and M. S. Ner, Opt. Lett. 5, 484 (1980).
  3. M. P. Petrov, V. M. Petrov, I. S. Zouboulis, and L. P. Xu, Opt. Commun. 134, 569 (1997).
    [CrossRef]
  4. Yu. O. Barmenkov and N. M. Kojevnikov, Pis'ma Zh. Tekh. Fiz. 17, 22 (1991).
  5. P. J. Collier, C. B. Burckhard, and L. H. Lin, Optical Holography (Academic, New York, 1971).
  6. M. P. Petrov, V. M. Petrov, V. V. Bryksin, I. S. Zouboulis, A. Gervens, and E. Kratzig, Opt. Lett. 22, 1083 (1997).
    [CrossRef] [PubMed]

1997 (2)

1994 (1)

S. I. Stepanov, Rep. Prog. Phys. 57, 39 (1994).
[CrossRef]

1991 (1)

Yu. O. Barmenkov and N. M. Kojevnikov, Pis'ma Zh. Tekh. Fiz. 17, 22 (1991).

1980 (1)

T. J. Hall, M. A. Fiddy, and M. S. Ner, Opt. Lett. 5, 484 (1980).

Barmenkov, Yu. O.

Yu. O. Barmenkov and N. M. Kojevnikov, Pis'ma Zh. Tekh. Fiz. 17, 22 (1991).

Bryksin, V. V.

Burckhard, C. B.

P. J. Collier, C. B. Burckhard, and L. H. Lin, Optical Holography (Academic, New York, 1971).

Collier, P. J.

P. J. Collier, C. B. Burckhard, and L. H. Lin, Optical Holography (Academic, New York, 1971).

Fiddy, M. A.

T. J. Hall, M. A. Fiddy, and M. S. Ner, Opt. Lett. 5, 484 (1980).

Gervens, A.

Hall, T. J.

T. J. Hall, M. A. Fiddy, and M. S. Ner, Opt. Lett. 5, 484 (1980).

Kojevnikov, N. M.

Yu. O. Barmenkov and N. M. Kojevnikov, Pis'ma Zh. Tekh. Fiz. 17, 22 (1991).

Kratzig, E.

Lin, L. H.

P. J. Collier, C. B. Burckhard, and L. H. Lin, Optical Holography (Academic, New York, 1971).

Ner, M. S.

T. J. Hall, M. A. Fiddy, and M. S. Ner, Opt. Lett. 5, 484 (1980).

Petrov, M. P.

Petrov, V. M.

Stepanov, S. I.

S. I. Stepanov, Rep. Prog. Phys. 57, 39 (1994).
[CrossRef]

Xu, L. P.

M. P. Petrov, V. M. Petrov, I. S. Zouboulis, and L. P. Xu, Opt. Commun. 134, 569 (1997).
[CrossRef]

Zouboulis, I. S.

Opt. Commun. (1)

M. P. Petrov, V. M. Petrov, I. S. Zouboulis, and L. P. Xu, Opt. Commun. 134, 569 (1997).
[CrossRef]

Opt. Lett. (2)

Pis'ma Zh. Tekh. Fiz. (1)

Yu. O. Barmenkov and N. M. Kojevnikov, Pis'ma Zh. Tekh. Fiz. 17, 22 (1991).

Rep. Prog. Phys. (1)

S. I. Stepanov, Rep. Prog. Phys. 57, 39 (1994).
[CrossRef]

Other (1)

P. J. Collier, C. B. Burckhard, and L. H. Lin, Optical Holography (Academic, New York, 1971).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Experimental setup for AHI using higher non-Bragg orders of diffraction. R, S, reference and signal beams, respectively; 1, polarized He–Ne laser; 2's, beam splitters; 3, vibrating mirror; 4, Bi12TiO20 crystal; 5, analyzer; 6, photodetector; Pos.N1, Pos.N2, positions 1 and 2, respectively.

Fig. 2
Fig. 2

SNR as a function of phase modulation amplitude T. Data from position  1 in Fig.  1 are given by curves (a) and (b) and represent the case of a volume hologram using two-wave mixing and the transition case of a thinner hologram, respectively. Data from position 2 are given by curves (c) and (d), which show the behavior of the transition case and the case of a thin hologram, respectively. 1Å=0.1 nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

AS=AS0 expiKSr, AR=AR0 expiKRr+θ cos Ωt, θ=4πl cos ξ/λ,
I2W=IS+ηIR-2η0ISIR1/2J0θJ1θcos Ωt,
INB=ISη-4IRISη0ηNL1/2J0θJ1θsin δ cos Ωt,

Metrics