Abstract

We describe and demonstrate a novel device in which a microwave oscillation and an optical oscillation are generated and directly coupled with each other. With the mutual influence between the microwave and the optical oscillations, we project that this device is capable of simultaneously generating stable optical pulses down to the subpicosecond level and spectrally pure microwave signals at frequencies greater than 70  GHz.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. S. Yao and L. Maleki, J. Opt. Soc. Am. B 13, 1725 (1996); Opt. Lett. 21, 483 (1996); Electron. Lett. 30, 1525 (1994).
    [Crossref]
  2. X. S. Yao and L. Maleki, IEEE J. Quantum Electron. 32, 1141 (1996).
    [Crossref]
  3. G. R. Huggett, Appl. Phys. Lett. 13, 86 (1968).
    [Crossref]
  4. T. Kinsel, IEEE J. Quantum Electron. QE-9, 3 (1973).
    [Crossref]
  5. K. Y. Lau and A. Yariv, Appl. Phys. Lett. 45, 124 (1984).
    [Crossref]
  6. J. D. Kafka, M. L. Watts, and J. J. Pieterse, IEEE J. Quantum. Electron. 28, 2151 (1992).
    [Crossref]
  7. M. Nakazawa, E. Yoshida, and Y. Kimura, Electron. Lett. 30, 1603 (1994).
    [Crossref]
  8. See, e.g., A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 27.
  9. X. S. Yao and L. Maleki, Proc. SPIE 3038, 97 (1997).
    [Crossref]
  10. The detailed description of the phase relationship of the optical and the microwave signals of the coupled oscillation will be discussed in a separate paper.

1997 (1)

X. S. Yao and L. Maleki, Proc. SPIE 3038, 97 (1997).
[Crossref]

1996 (2)

1994 (1)

M. Nakazawa, E. Yoshida, and Y. Kimura, Electron. Lett. 30, 1603 (1994).
[Crossref]

1992 (1)

J. D. Kafka, M. L. Watts, and J. J. Pieterse, IEEE J. Quantum. Electron. 28, 2151 (1992).
[Crossref]

1984 (1)

K. Y. Lau and A. Yariv, Appl. Phys. Lett. 45, 124 (1984).
[Crossref]

1973 (1)

T. Kinsel, IEEE J. Quantum Electron. QE-9, 3 (1973).
[Crossref]

1968 (1)

G. R. Huggett, Appl. Phys. Lett. 13, 86 (1968).
[Crossref]

Huggett, G. R.

G. R. Huggett, Appl. Phys. Lett. 13, 86 (1968).
[Crossref]

Kafka, J. D.

J. D. Kafka, M. L. Watts, and J. J. Pieterse, IEEE J. Quantum. Electron. 28, 2151 (1992).
[Crossref]

Kimura, Y.

M. Nakazawa, E. Yoshida, and Y. Kimura, Electron. Lett. 30, 1603 (1994).
[Crossref]

Kinsel, T.

T. Kinsel, IEEE J. Quantum Electron. QE-9, 3 (1973).
[Crossref]

Lau, K. Y.

K. Y. Lau and A. Yariv, Appl. Phys. Lett. 45, 124 (1984).
[Crossref]

Maleki, L.

X. S. Yao and L. Maleki, Proc. SPIE 3038, 97 (1997).
[Crossref]

X. S. Yao and L. Maleki, J. Opt. Soc. Am. B 13, 1725 (1996); Opt. Lett. 21, 483 (1996); Electron. Lett. 30, 1525 (1994).
[Crossref]

X. S. Yao and L. Maleki, IEEE J. Quantum Electron. 32, 1141 (1996).
[Crossref]

Nakazawa, M.

M. Nakazawa, E. Yoshida, and Y. Kimura, Electron. Lett. 30, 1603 (1994).
[Crossref]

Pieterse, J. J.

J. D. Kafka, M. L. Watts, and J. J. Pieterse, IEEE J. Quantum. Electron. 28, 2151 (1992).
[Crossref]

Siegman, A. E.

See, e.g., A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 27.

Watts, M. L.

J. D. Kafka, M. L. Watts, and J. J. Pieterse, IEEE J. Quantum. Electron. 28, 2151 (1992).
[Crossref]

Yao, X. S.

X. S. Yao and L. Maleki, Proc. SPIE 3038, 97 (1997).
[Crossref]

X. S. Yao and L. Maleki, J. Opt. Soc. Am. B 13, 1725 (1996); Opt. Lett. 21, 483 (1996); Electron. Lett. 30, 1525 (1994).
[Crossref]

X. S. Yao and L. Maleki, IEEE J. Quantum Electron. 32, 1141 (1996).
[Crossref]

Yariv, A.

K. Y. Lau and A. Yariv, Appl. Phys. Lett. 45, 124 (1984).
[Crossref]

Yoshida, E.

M. Nakazawa, E. Yoshida, and Y. Kimura, Electron. Lett. 30, 1603 (1994).
[Crossref]

Appl. Phys. Lett. (2)

G. R. Huggett, Appl. Phys. Lett. 13, 86 (1968).
[Crossref]

K. Y. Lau and A. Yariv, Appl. Phys. Lett. 45, 124 (1984).
[Crossref]

Electron. Lett. (1)

M. Nakazawa, E. Yoshida, and Y. Kimura, Electron. Lett. 30, 1603 (1994).
[Crossref]

IEEE J. Quantum Electron. (2)

T. Kinsel, IEEE J. Quantum Electron. QE-9, 3 (1973).
[Crossref]

X. S. Yao and L. Maleki, IEEE J. Quantum Electron. 32, 1141 (1996).
[Crossref]

IEEE J. Quantum. Electron. (1)

J. D. Kafka, M. L. Watts, and J. J. Pieterse, IEEE J. Quantum. Electron. 28, 2151 (1992).
[Crossref]

J. Opt. Soc. Am. B (1)

Proc. SPIE (1)

X. S. Yao and L. Maleki, Proc. SPIE 3038, 97 (1997).
[Crossref]

Other (2)

The detailed description of the phase relationship of the optical and the microwave signals of the coupled oscillation will be discussed in a separate paper.

See, e.g., A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 27.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Ring laser built with a semiconductor optical amplifier: 1–4, ports of the optical coupler. (b) Measured power versus drive-current curve of the ring laser.

Fig. 2
Fig. 2

(a) Schematic of a COEO. (b) All possible laser modes with a mode spacing of Δν. The modes have random phases in the absence of the electro-optic feedback. (c) All possible mode beat frequencies of the laser modes in the photodetector. The lowest frequency (Δν) corresponds to the sum of the beats between adjacent modes; the second lowest frequency 2Δν, to the sum of the beats between every other mode; and so on. Owing to the random phases of the laser modes, these beat signals are weak and noisy. (d) All possible oscillating modes defined by the optoelectronic loop. Only those modes that are aligned with a mode beat frequency can obtain gain (or energy) from the laser. An electrical filter with a bandwidth narrower than the mode spacing of the laser selects one OEO mode (f=3Δν in the figure) to oscillate. (e) The selected OEO oscillation then drives and mode locks the laser, limiting the number of oscillating laser modes and forcing them to oscillate in phase. (f) The beat of the in-phase laser modes in turn greatly enhances the selected OEO oscillation.

Fig. 3
Fig. 3

COEO with a 300-MHz filter. (a) Mode beat spectrum of the COEO measured at the optical output port. (b) rf spectrum of the COEO measured at the electrical output port. (c) Time-domain measurements of the COEO at the optical output port. Id, laser drive current; RBW, resolution bandwidth setting of the spectrum analyzer.

Fig. 4
Fig. 4

COEO with an 800-MHz filter. (a) rf spectrum of the COEO at the rf output port. (b) Time-domain measurement of the COEO at the optical output port. A train of 50-ps short pulses is evident.

Metrics