Abstract

We demonstrate a scheme for optical pulse compression by cross-phase modulation that utilizes a nonuniform Bragg grating to work in reflection. Our scheme is similar to the conventional optical pushbroom, which works in transmission. This reflection geometry has the advantage of allowing the compressed signal to be observed easily, as it is spatially separate from the pump. This is to our knowledge the first nonlinear effect to be observed that requires a nonuniform grating.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. M. de Sterke, Opt. Lett. 17, 914 (1992).
    [CrossRef] [PubMed]
  2. M. J. Steel and C. M. de Sterke, Phys. Rev. A 49, 5048 (1994).
    [CrossRef] [PubMed]
  3. N. G. R. Broderick, D. Taverner, D. J. Richardson, M. Isben, and R. I. Laming, in Bragg Gratings, Photosensivity, and Poling in Glass Fibers and Waveguides: Applications and Fundamentals, OSA Technical Digest Series (Optical Society of America, Washington, D.C., to be published).
  4. N. Broderick and C. M. de Sterke, Phys. Rev. E 52, 4458 (1995).
    [CrossRef]
  5. J. E. Sipe, L. Poladian, and C. M. de Sterke, J. Opt. Soc. Am. A 11, 1307 (1994).
    [CrossRef]
  6. S. LaRochelle, Y. Hibino, V. Mizrahi, and G. I. Stegeman, Electron. Lett. 26, 1459 (1990).
    [CrossRef]
  7. D. Taverner, D. J. Richardson, L. Dong, J. E. Caplen, K. Williams, and R. V. Penty, Opt. Lett. 22, 378 (1997).
    [CrossRef] [PubMed]
  8. U. Mohideen, R. E. Slusher, V. Mizrahi, T. Erdogan, J. E. Sipe, M. Gonokami, P. J. Lemaire, C. M. de Sterke, and N. G. R. Broderick, Opt. Lett. 20, 1674 (1995).
    [CrossRef]
  9. B. J. Eggleton, C. M. de Sterke, and R. E. Slusher, Opt. Lett. 21, 1223 (1996).
    [CrossRef] [PubMed]
  10. N. G. Broderick and C. M. de Sterke, Phys. Rev. E 55, 3634 (1997).
    [CrossRef]

1997 (2)

1996 (1)

1995 (2)

1994 (2)

1992 (1)

1990 (1)

S. LaRochelle, Y. Hibino, V. Mizrahi, and G. I. Stegeman, Electron. Lett. 26, 1459 (1990).
[CrossRef]

Broderick, N.

N. Broderick and C. M. de Sterke, Phys. Rev. E 52, 4458 (1995).
[CrossRef]

Broderick, N. G.

N. G. Broderick and C. M. de Sterke, Phys. Rev. E 55, 3634 (1997).
[CrossRef]

Broderick, N. G. R.

U. Mohideen, R. E. Slusher, V. Mizrahi, T. Erdogan, J. E. Sipe, M. Gonokami, P. J. Lemaire, C. M. de Sterke, and N. G. R. Broderick, Opt. Lett. 20, 1674 (1995).
[CrossRef]

N. G. R. Broderick, D. Taverner, D. J. Richardson, M. Isben, and R. I. Laming, in Bragg Gratings, Photosensivity, and Poling in Glass Fibers and Waveguides: Applications and Fundamentals, OSA Technical Digest Series (Optical Society of America, Washington, D.C., to be published).

Caplen, J. E.

de Sterke, C. M.

Dong, L.

Eggleton, B. J.

Erdogan, T.

Gonokami, M.

Hibino, Y.

S. LaRochelle, Y. Hibino, V. Mizrahi, and G. I. Stegeman, Electron. Lett. 26, 1459 (1990).
[CrossRef]

Isben, M.

N. G. R. Broderick, D. Taverner, D. J. Richardson, M. Isben, and R. I. Laming, in Bragg Gratings, Photosensivity, and Poling in Glass Fibers and Waveguides: Applications and Fundamentals, OSA Technical Digest Series (Optical Society of America, Washington, D.C., to be published).

Laming, R. I.

N. G. R. Broderick, D. Taverner, D. J. Richardson, M. Isben, and R. I. Laming, in Bragg Gratings, Photosensivity, and Poling in Glass Fibers and Waveguides: Applications and Fundamentals, OSA Technical Digest Series (Optical Society of America, Washington, D.C., to be published).

LaRochelle, S.

S. LaRochelle, Y. Hibino, V. Mizrahi, and G. I. Stegeman, Electron. Lett. 26, 1459 (1990).
[CrossRef]

Lemaire, P. J.

Mizrahi, V.

Mohideen, U.

Penty, R. V.

Poladian, L.

Richardson, D. J.

D. Taverner, D. J. Richardson, L. Dong, J. E. Caplen, K. Williams, and R. V. Penty, Opt. Lett. 22, 378 (1997).
[CrossRef] [PubMed]

N. G. R. Broderick, D. Taverner, D. J. Richardson, M. Isben, and R. I. Laming, in Bragg Gratings, Photosensivity, and Poling in Glass Fibers and Waveguides: Applications and Fundamentals, OSA Technical Digest Series (Optical Society of America, Washington, D.C., to be published).

Sipe, J. E.

Slusher, R. E.

Steel, M. J.

M. J. Steel and C. M. de Sterke, Phys. Rev. A 49, 5048 (1994).
[CrossRef] [PubMed]

Stegeman, G. I.

S. LaRochelle, Y. Hibino, V. Mizrahi, and G. I. Stegeman, Electron. Lett. 26, 1459 (1990).
[CrossRef]

Taverner, D.

D. Taverner, D. J. Richardson, L. Dong, J. E. Caplen, K. Williams, and R. V. Penty, Opt. Lett. 22, 378 (1997).
[CrossRef] [PubMed]

N. G. R. Broderick, D. Taverner, D. J. Richardson, M. Isben, and R. I. Laming, in Bragg Gratings, Photosensivity, and Poling in Glass Fibers and Waveguides: Applications and Fundamentals, OSA Technical Digest Series (Optical Society of America, Washington, D.C., to be published).

Williams, K.

Electron. Lett. (1)

S. LaRochelle, Y. Hibino, V. Mizrahi, and G. I. Stegeman, Electron. Lett. 26, 1459 (1990).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Lett. (4)

Phys. Rev. A (1)

M. J. Steel and C. M. de Sterke, Phys. Rev. A 49, 5048 (1994).
[CrossRef] [PubMed]

Phys. Rev. E (2)

N. Broderick and C. M. de Sterke, Phys. Rev. E 52, 4458 (1995).
[CrossRef]

N. G. Broderick and C. M. de Sterke, Phys. Rev. E 55, 3634 (1997).
[CrossRef]

Other (1)

N. G. R. Broderick, D. Taverner, D. J. Richardson, M. Isben, and R. I. Laming, in Bragg Gratings, Photosensivity, and Poling in Glass Fibers and Waveguides: Applications and Fundamentals, OSA Technical Digest Series (Optical Society of America, Washington, D.C., to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Band diagram for the nonuniform grating used in the experiments. The hatched region indicates those frequencies (as a function of position) that are reflected by the grating. The conventional optical pushbroom works below the bandgap in region  1. Our alternative works above the bandgap in region  2.

Fig. 2
Fig. 2

Schematic of the experimental setup: PBS, polarization beam splitter; LA-EDFA, large-mode-area erbium-doped fiber amplifier chain; FBG, fiber Bragg grating; LD, laser diode.

Fig. 3
Fig. 3

Reflection spectra of the NBG used in the experiments (solid curve) and in the simulations (dashed curve). The wavelength resolution is 0.001  nm. Note the very slight asymmetry in the actual spectrum and the almost complete absence of sidelobes. The grating bandwidth is 3.8 GHz. The filled circle indicates the frequency used in our numerical simulations.

Fig. 4
Fig. 4

Experimental trace of the reflected pushbroom. The solid curve shows the reflected fraction of the probe beam. The dashed curve shows the results of our numerical simulations of the system with the same parameters. Note the excellent agreement in the shape of the dip and the width of the front feature. The inset shows the intensity profile of the pump pulse before the grating. The time origins on the graphs are unrelated. The peak pump intensity is 10 GW/cm2.

Metrics