Abstract

We produce minimally disruptive breakdown in water by using tightly focused 100-fs laser pulses and demonstrate the potential use of this technique in microsurgery of the eye. Using time-resolved imaging and piezoelectric pressure detection, we measure the magnitude and speed of propagation of the pressure wave produced in the breakdown. Compared with breakdown with longer pulses, here there is a much lower energy threshold for breakdown of 0.2 µJ, a smaller shock zone diameter (11 µm for 1µJ pulses), and consistent energy deposition.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Krauss and C. A. Puliafito, in Laser Surgery and Medicine: Principles and Practice, C. A. Puliafito, ed. (Wiley-Liss, New York, 1996), Chap.  8, p. 249.
  2. R. F. Steinert and C. A. Puliafito, The Nd:YAG Laser in Ophthamology: Principles and Clinical Applications of Photodisruption (Saunders, Philadelphia, Pa., 1985).
  3. P. A. Barnes and K. E. Rieckoff, Appl. Phys. Lett. 13, 282 (1968).
    [CrossRef]
  4. B. Zysset, J. G. Fujimoto, and T. F. Deutsch, Appl. Phys. B 48, 139 (1989).
    [CrossRef]
  5. Later, a cavitation bubble forms on a microsecond time scale. The size and evolution of the cavitation bubble in corneal tissue are reported in X. H. Hu, L. Turi, and Z. Bor, Lasers Surg. Med. 15, 91 (1994)T. Juhasz, G. A. Kastis, C. Suarez, Z. Bor, and W. E. Bron, Lasers Surg. Med. 17, 1 (1995).
    [CrossRef]
  6. A. G. Doukas, A. D. Zweig, J. K. Frisoli, R. Birngruber, and T. F. Deutsch, Appl. Phys. B 53, 237 (1991).
    [CrossRef]
  7. T. Juhasz, G. Kastis, C. Suarez, L. Turi, Z. Bor, and W. E. Bron, Proc. SPIE 2681, 428 (1996).
    [CrossRef]
  8. A. Vogel, S. Busch, and U. Parlitz, J. Acoust. Soc. Am. 100, 148 (1996).
    [CrossRef]
  9. D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. K. Kennedy, and W. P. Roach, IEEE J. Quantum Electron. 32, 670 (1996).
    [CrossRef]
  10. C. P. Cain, G. D. Noojin, D. X. Hammer, R. J. Thomas, and B. A. Rockwell, J. Biomed. Opt. 2, 88 (1997).
    [CrossRef] [PubMed]
  11. Water is a good basic model for studies of breakdown and shock wave propagation in tissue for two reasons: First, breakdown thresholds for femtosecond pulses differ little from one transparent material to another (see text). Second, shock dynamics are similar in water and tissue because tissue is composed largely of water and thus has nearly the same density, compressibility, and sound velocity. The similarity of the shock wave dynamics has been confirmed by experiments comparing water with bovine corneas [T. Juhasz, X. H. Hu, L. Turi, and Z. Bor, Lasers Surg. Med. 15, 91 (1994)].
    [CrossRef]
  12. The data in Fig.  5 were taken by use of the magnitude of a later peak in the detector response, i.e., not the first peak, which was used in Fig.  4.
  13. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, and E. Mazur, Opt. Lett. 21, 2023 (1996).
    [CrossRef] [PubMed]
  14. E. N. Glezer and E. Mazur, Appl. Phys. Lett. 71, 882 (1997).
    [CrossRef]
  15. The larger value of the energy threshold in water is likely due to spherical abberation introduced by focusing through a 180-µm-thick window in the water cell.

1997 (2)

C. P. Cain, G. D. Noojin, D. X. Hammer, R. J. Thomas, and B. A. Rockwell, J. Biomed. Opt. 2, 88 (1997).
[CrossRef] [PubMed]

E. N. Glezer and E. Mazur, Appl. Phys. Lett. 71, 882 (1997).
[CrossRef]

1996 (4)

E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, and E. Mazur, Opt. Lett. 21, 2023 (1996).
[CrossRef] [PubMed]

T. Juhasz, G. Kastis, C. Suarez, L. Turi, Z. Bor, and W. E. Bron, Proc. SPIE 2681, 428 (1996).
[CrossRef]

A. Vogel, S. Busch, and U. Parlitz, J. Acoust. Soc. Am. 100, 148 (1996).
[CrossRef]

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. K. Kennedy, and W. P. Roach, IEEE J. Quantum Electron. 32, 670 (1996).
[CrossRef]

1994 (2)

Water is a good basic model for studies of breakdown and shock wave propagation in tissue for two reasons: First, breakdown thresholds for femtosecond pulses differ little from one transparent material to another (see text). Second, shock dynamics are similar in water and tissue because tissue is composed largely of water and thus has nearly the same density, compressibility, and sound velocity. The similarity of the shock wave dynamics has been confirmed by experiments comparing water with bovine corneas [T. Juhasz, X. H. Hu, L. Turi, and Z. Bor, Lasers Surg. Med. 15, 91 (1994)].
[CrossRef]

Later, a cavitation bubble forms on a microsecond time scale. The size and evolution of the cavitation bubble in corneal tissue are reported in X. H. Hu, L. Turi, and Z. Bor, Lasers Surg. Med. 15, 91 (1994)T. Juhasz, G. A. Kastis, C. Suarez, Z. Bor, and W. E. Bron, Lasers Surg. Med. 17, 1 (1995).
[CrossRef]

1991 (1)

A. G. Doukas, A. D. Zweig, J. K. Frisoli, R. Birngruber, and T. F. Deutsch, Appl. Phys. B 53, 237 (1991).
[CrossRef]

1989 (1)

B. Zysset, J. G. Fujimoto, and T. F. Deutsch, Appl. Phys. B 48, 139 (1989).
[CrossRef]

1968 (1)

P. A. Barnes and K. E. Rieckoff, Appl. Phys. Lett. 13, 282 (1968).
[CrossRef]

Barnes, P. A.

P. A. Barnes and K. E. Rieckoff, Appl. Phys. Lett. 13, 282 (1968).
[CrossRef]

Birngruber, R.

A. G. Doukas, A. D. Zweig, J. K. Frisoli, R. Birngruber, and T. F. Deutsch, Appl. Phys. B 53, 237 (1991).
[CrossRef]

Bor, Z.

T. Juhasz, G. Kastis, C. Suarez, L. Turi, Z. Bor, and W. E. Bron, Proc. SPIE 2681, 428 (1996).
[CrossRef]

Later, a cavitation bubble forms on a microsecond time scale. The size and evolution of the cavitation bubble in corneal tissue are reported in X. H. Hu, L. Turi, and Z. Bor, Lasers Surg. Med. 15, 91 (1994)T. Juhasz, G. A. Kastis, C. Suarez, Z. Bor, and W. E. Bron, Lasers Surg. Med. 17, 1 (1995).
[CrossRef]

Water is a good basic model for studies of breakdown and shock wave propagation in tissue for two reasons: First, breakdown thresholds for femtosecond pulses differ little from one transparent material to another (see text). Second, shock dynamics are similar in water and tissue because tissue is composed largely of water and thus has nearly the same density, compressibility, and sound velocity. The similarity of the shock wave dynamics has been confirmed by experiments comparing water with bovine corneas [T. Juhasz, X. H. Hu, L. Turi, and Z. Bor, Lasers Surg. Med. 15, 91 (1994)].
[CrossRef]

Bron, W. E.

T. Juhasz, G. Kastis, C. Suarez, L. Turi, Z. Bor, and W. E. Bron, Proc. SPIE 2681, 428 (1996).
[CrossRef]

Busch, S.

A. Vogel, S. Busch, and U. Parlitz, J. Acoust. Soc. Am. 100, 148 (1996).
[CrossRef]

Cain, C. P.

C. P. Cain, G. D. Noojin, D. X. Hammer, R. J. Thomas, and B. A. Rockwell, J. Biomed. Opt. 2, 88 (1997).
[CrossRef] [PubMed]

Callan, J. P.

Deutsch, T. F.

A. G. Doukas, A. D. Zweig, J. K. Frisoli, R. Birngruber, and T. F. Deutsch, Appl. Phys. B 53, 237 (1991).
[CrossRef]

B. Zysset, J. G. Fujimoto, and T. F. Deutsch, Appl. Phys. B 48, 139 (1989).
[CrossRef]

Doukas, A. G.

A. G. Doukas, A. D. Zweig, J. K. Frisoli, R. Birngruber, and T. F. Deutsch, Appl. Phys. B 53, 237 (1991).
[CrossRef]

Finlay, R. J.

Frisoli, J. K.

A. G. Doukas, A. D. Zweig, J. K. Frisoli, R. Birngruber, and T. F. Deutsch, Appl. Phys. B 53, 237 (1991).
[CrossRef]

Fujimoto, J. G.

B. Zysset, J. G. Fujimoto, and T. F. Deutsch, Appl. Phys. B 48, 139 (1989).
[CrossRef]

Glezer, E. N.

Hammer, D. X.

C. P. Cain, G. D. Noojin, D. X. Hammer, R. J. Thomas, and B. A. Rockwell, J. Biomed. Opt. 2, 88 (1997).
[CrossRef] [PubMed]

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. K. Kennedy, and W. P. Roach, IEEE J. Quantum Electron. 32, 670 (1996).
[CrossRef]

Her, T.-H.

Hu, X. H.

Water is a good basic model for studies of breakdown and shock wave propagation in tissue for two reasons: First, breakdown thresholds for femtosecond pulses differ little from one transparent material to another (see text). Second, shock dynamics are similar in water and tissue because tissue is composed largely of water and thus has nearly the same density, compressibility, and sound velocity. The similarity of the shock wave dynamics has been confirmed by experiments comparing water with bovine corneas [T. Juhasz, X. H. Hu, L. Turi, and Z. Bor, Lasers Surg. Med. 15, 91 (1994)].
[CrossRef]

Later, a cavitation bubble forms on a microsecond time scale. The size and evolution of the cavitation bubble in corneal tissue are reported in X. H. Hu, L. Turi, and Z. Bor, Lasers Surg. Med. 15, 91 (1994)T. Juhasz, G. A. Kastis, C. Suarez, Z. Bor, and W. E. Bron, Lasers Surg. Med. 17, 1 (1995).
[CrossRef]

Huang, L.

Juhasz, T.

T. Juhasz, G. Kastis, C. Suarez, L. Turi, Z. Bor, and W. E. Bron, Proc. SPIE 2681, 428 (1996).
[CrossRef]

Water is a good basic model for studies of breakdown and shock wave propagation in tissue for two reasons: First, breakdown thresholds for femtosecond pulses differ little from one transparent material to another (see text). Second, shock dynamics are similar in water and tissue because tissue is composed largely of water and thus has nearly the same density, compressibility, and sound velocity. The similarity of the shock wave dynamics has been confirmed by experiments comparing water with bovine corneas [T. Juhasz, X. H. Hu, L. Turi, and Z. Bor, Lasers Surg. Med. 15, 91 (1994)].
[CrossRef]

Kastis, G.

T. Juhasz, G. Kastis, C. Suarez, L. Turi, Z. Bor, and W. E. Bron, Proc. SPIE 2681, 428 (1996).
[CrossRef]

Kennedy, P. K.

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. K. Kennedy, and W. P. Roach, IEEE J. Quantum Electron. 32, 670 (1996).
[CrossRef]

Krauss, J. M.

J. M. Krauss and C. A. Puliafito, in Laser Surgery and Medicine: Principles and Practice, C. A. Puliafito, ed. (Wiley-Liss, New York, 1996), Chap.  8, p. 249.

Mazur, E.

Milosavljevic, M.

Noojin, G. D.

C. P. Cain, G. D. Noojin, D. X. Hammer, R. J. Thomas, and B. A. Rockwell, J. Biomed. Opt. 2, 88 (1997).
[CrossRef] [PubMed]

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. K. Kennedy, and W. P. Roach, IEEE J. Quantum Electron. 32, 670 (1996).
[CrossRef]

Parlitz, U.

A. Vogel, S. Busch, and U. Parlitz, J. Acoust. Soc. Am. 100, 148 (1996).
[CrossRef]

Puliafito, C. A.

J. M. Krauss and C. A. Puliafito, in Laser Surgery and Medicine: Principles and Practice, C. A. Puliafito, ed. (Wiley-Liss, New York, 1996), Chap.  8, p. 249.

R. F. Steinert and C. A. Puliafito, The Nd:YAG Laser in Ophthamology: Principles and Clinical Applications of Photodisruption (Saunders, Philadelphia, Pa., 1985).

Rieckoff, K. E.

P. A. Barnes and K. E. Rieckoff, Appl. Phys. Lett. 13, 282 (1968).
[CrossRef]

Roach, W. P.

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. K. Kennedy, and W. P. Roach, IEEE J. Quantum Electron. 32, 670 (1996).
[CrossRef]

Rockwell, B. A.

C. P. Cain, G. D. Noojin, D. X. Hammer, R. J. Thomas, and B. A. Rockwell, J. Biomed. Opt. 2, 88 (1997).
[CrossRef] [PubMed]

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. K. Kennedy, and W. P. Roach, IEEE J. Quantum Electron. 32, 670 (1996).
[CrossRef]

Steinert, R. F.

R. F. Steinert and C. A. Puliafito, The Nd:YAG Laser in Ophthamology: Principles and Clinical Applications of Photodisruption (Saunders, Philadelphia, Pa., 1985).

Suarez, C.

T. Juhasz, G. Kastis, C. Suarez, L. Turi, Z. Bor, and W. E. Bron, Proc. SPIE 2681, 428 (1996).
[CrossRef]

Thomas, R. J.

C. P. Cain, G. D. Noojin, D. X. Hammer, R. J. Thomas, and B. A. Rockwell, J. Biomed. Opt. 2, 88 (1997).
[CrossRef] [PubMed]

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. K. Kennedy, and W. P. Roach, IEEE J. Quantum Electron. 32, 670 (1996).
[CrossRef]

Turi, L.

T. Juhasz, G. Kastis, C. Suarez, L. Turi, Z. Bor, and W. E. Bron, Proc. SPIE 2681, 428 (1996).
[CrossRef]

Later, a cavitation bubble forms on a microsecond time scale. The size and evolution of the cavitation bubble in corneal tissue are reported in X. H. Hu, L. Turi, and Z. Bor, Lasers Surg. Med. 15, 91 (1994)T. Juhasz, G. A. Kastis, C. Suarez, Z. Bor, and W. E. Bron, Lasers Surg. Med. 17, 1 (1995).
[CrossRef]

Water is a good basic model for studies of breakdown and shock wave propagation in tissue for two reasons: First, breakdown thresholds for femtosecond pulses differ little from one transparent material to another (see text). Second, shock dynamics are similar in water and tissue because tissue is composed largely of water and thus has nearly the same density, compressibility, and sound velocity. The similarity of the shock wave dynamics has been confirmed by experiments comparing water with bovine corneas [T. Juhasz, X. H. Hu, L. Turi, and Z. Bor, Lasers Surg. Med. 15, 91 (1994)].
[CrossRef]

Vogel, A.

A. Vogel, S. Busch, and U. Parlitz, J. Acoust. Soc. Am. 100, 148 (1996).
[CrossRef]

Zweig, A. D.

A. G. Doukas, A. D. Zweig, J. K. Frisoli, R. Birngruber, and T. F. Deutsch, Appl. Phys. B 53, 237 (1991).
[CrossRef]

Zysset, B.

B. Zysset, J. G. Fujimoto, and T. F. Deutsch, Appl. Phys. B 48, 139 (1989).
[CrossRef]

Appl. Phys. B (2)

B. Zysset, J. G. Fujimoto, and T. F. Deutsch, Appl. Phys. B 48, 139 (1989).
[CrossRef]

A. G. Doukas, A. D. Zweig, J. K. Frisoli, R. Birngruber, and T. F. Deutsch, Appl. Phys. B 53, 237 (1991).
[CrossRef]

Appl. Phys. Lett. (2)

P. A. Barnes and K. E. Rieckoff, Appl. Phys. Lett. 13, 282 (1968).
[CrossRef]

E. N. Glezer and E. Mazur, Appl. Phys. Lett. 71, 882 (1997).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. K. Kennedy, and W. P. Roach, IEEE J. Quantum Electron. 32, 670 (1996).
[CrossRef]

J. Acoust. Soc. Am. (1)

A. Vogel, S. Busch, and U. Parlitz, J. Acoust. Soc. Am. 100, 148 (1996).
[CrossRef]

J. Biomed. Opt. (1)

C. P. Cain, G. D. Noojin, D. X. Hammer, R. J. Thomas, and B. A. Rockwell, J. Biomed. Opt. 2, 88 (1997).
[CrossRef] [PubMed]

Lasers Surg. Med. (2)

Water is a good basic model for studies of breakdown and shock wave propagation in tissue for two reasons: First, breakdown thresholds for femtosecond pulses differ little from one transparent material to another (see text). Second, shock dynamics are similar in water and tissue because tissue is composed largely of water and thus has nearly the same density, compressibility, and sound velocity. The similarity of the shock wave dynamics has been confirmed by experiments comparing water with bovine corneas [T. Juhasz, X. H. Hu, L. Turi, and Z. Bor, Lasers Surg. Med. 15, 91 (1994)].
[CrossRef]

Later, a cavitation bubble forms on a microsecond time scale. The size and evolution of the cavitation bubble in corneal tissue are reported in X. H. Hu, L. Turi, and Z. Bor, Lasers Surg. Med. 15, 91 (1994)T. Juhasz, G. A. Kastis, C. Suarez, Z. Bor, and W. E. Bron, Lasers Surg. Med. 17, 1 (1995).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

T. Juhasz, G. Kastis, C. Suarez, L. Turi, Z. Bor, and W. E. Bron, Proc. SPIE 2681, 428 (1996).
[CrossRef]

Other (4)

J. M. Krauss and C. A. Puliafito, in Laser Surgery and Medicine: Principles and Practice, C. A. Puliafito, ed. (Wiley-Liss, New York, 1996), Chap.  8, p. 249.

R. F. Steinert and C. A. Puliafito, The Nd:YAG Laser in Ophthamology: Principles and Clinical Applications of Photodisruption (Saunders, Philadelphia, Pa., 1985).

The larger value of the energy threshold in water is likely due to spherical abberation introduced by focusing through a 180-µm-thick window in the water cell.

The data in Fig.  5 were taken by use of the magnitude of a later peak in the detector response, i.e., not the first peak, which was used in Fig.  4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Time-resolved imaging setup for observing the dynamics of laser-induced breakdown in water. Small vapor bubbles and expanding pressure waves photographed 35  ns after optical excitation by 100-fs, 800-nm laser pulses of (b) 1-µJ and (c) 14-µJ energy.

Fig. 2
Fig. 2

Radial expansion of the pressure wave driven by 1-µJ (filled squares), 10-µJ (filled triangles), and 30-µJ (filled circles) pulses. The radii were measured to the outer edge of the pressure wave. The line represents propagation of sound in water (1.48 µm/ns). The inset shows the first 3  ns of expansion from which the shock zone and initial expansion velocity are determined.

Fig. 3
Fig. 3

(a) Water cell for piezoelectric pressure measurements. (b) Response of the piezoelectric sensor to the pressure wave produced by a 100-fs, 1.8-µJ pulse. The signal is averaged over 100 pulses. We use the amplitude of the first peak (arrow) as a measure of the pressure in the wave.

Fig. 4
Fig. 4

Piezoelectric detection of the pressure wave produced by 100-fs laser-induced breakdown in water.

Fig. 5
Fig. 5

Comparison of the pressure produced by 100-fs pulses (filled circles) and 200-ps pulses (squares) in water. Each point is averaged over 100  pulses. In the 200-ps data the open squares represent a range in pulse energy where some pulses produce no signal, whereas others significantly exceed the average.

Metrics