Abstract

We report the use of a ferroelectric liquid-crystal (FLC) mask as an optical encoder for development of a solid-state Fourier-transform spectrometer. For this demonstration a 1×64 element array was striped and used as a 1×4 element device. The device intersected dispersed radiation and encoded each spectral component with a carrier signal by applying half-wave potential to each of the four striped 1×16 FLC elements, which varied the transmitted amplitude of the light from 0.03% to 28% of full scale. The light was spectrally recombined and imaged onto a photomultiplier and the resulting carriers (and their amplitudes) detected by Fourier transformation of the time-varying signal. Spectra of colored-glass filters were taken to demonstrate the possibilities of the instrument.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. S. Bohmse, A. C. Stanton, and J. A. Silver, Appl. Opt. 31, 718 (1992).
    [Crossref]
  2. R. M. Hammaker, A. P. Bohlke, R. D. Freeman, J. A. Graham, J. M. Jarvis, K. J. Latas, D. Lin-Vien, A. N. Mortensen, E. A. Orr, J. D. Tate, D. C. Tilotta, J. S. White, S. L. Wright, J. V. Paukstelis, and W. G. Fateley, in Modern Techniques in Raman Spectroscopy, J. J. Laserna, ed. (Wiley, New York, 1996), pp. 143–225.
  3. IUPAC symbol recommendation in Commission on Spectrochemical and Other Optical Procedures, Pure Appl. Chem. 67, 1745 (1995), Table 1.
  4. R. Sobczyniski, J. L. Porter, R. M. Hammaker, and W. G. Fateley, Laser Focus World 31(3), 75 (1995).

1995 (2)

IUPAC symbol recommendation in Commission on Spectrochemical and Other Optical Procedures, Pure Appl. Chem. 67, 1745 (1995), Table 1.

R. Sobczyniski, J. L. Porter, R. M. Hammaker, and W. G. Fateley, Laser Focus World 31(3), 75 (1995).

1992 (1)

Bohlke, A. P.

R. M. Hammaker, A. P. Bohlke, R. D. Freeman, J. A. Graham, J. M. Jarvis, K. J. Latas, D. Lin-Vien, A. N. Mortensen, E. A. Orr, J. D. Tate, D. C. Tilotta, J. S. White, S. L. Wright, J. V. Paukstelis, and W. G. Fateley, in Modern Techniques in Raman Spectroscopy, J. J. Laserna, ed. (Wiley, New York, 1996), pp. 143–225.

Bohmse, D. S.

Fateley, W. G.

R. Sobczyniski, J. L. Porter, R. M. Hammaker, and W. G. Fateley, Laser Focus World 31(3), 75 (1995).

R. M. Hammaker, A. P. Bohlke, R. D. Freeman, J. A. Graham, J. M. Jarvis, K. J. Latas, D. Lin-Vien, A. N. Mortensen, E. A. Orr, J. D. Tate, D. C. Tilotta, J. S. White, S. L. Wright, J. V. Paukstelis, and W. G. Fateley, in Modern Techniques in Raman Spectroscopy, J. J. Laserna, ed. (Wiley, New York, 1996), pp. 143–225.

Freeman, R. D.

R. M. Hammaker, A. P. Bohlke, R. D. Freeman, J. A. Graham, J. M. Jarvis, K. J. Latas, D. Lin-Vien, A. N. Mortensen, E. A. Orr, J. D. Tate, D. C. Tilotta, J. S. White, S. L. Wright, J. V. Paukstelis, and W. G. Fateley, in Modern Techniques in Raman Spectroscopy, J. J. Laserna, ed. (Wiley, New York, 1996), pp. 143–225.

Graham, J. A.

R. M. Hammaker, A. P. Bohlke, R. D. Freeman, J. A. Graham, J. M. Jarvis, K. J. Latas, D. Lin-Vien, A. N. Mortensen, E. A. Orr, J. D. Tate, D. C. Tilotta, J. S. White, S. L. Wright, J. V. Paukstelis, and W. G. Fateley, in Modern Techniques in Raman Spectroscopy, J. J. Laserna, ed. (Wiley, New York, 1996), pp. 143–225.

Hammaker, R. M.

R. Sobczyniski, J. L. Porter, R. M. Hammaker, and W. G. Fateley, Laser Focus World 31(3), 75 (1995).

R. M. Hammaker, A. P. Bohlke, R. D. Freeman, J. A. Graham, J. M. Jarvis, K. J. Latas, D. Lin-Vien, A. N. Mortensen, E. A. Orr, J. D. Tate, D. C. Tilotta, J. S. White, S. L. Wright, J. V. Paukstelis, and W. G. Fateley, in Modern Techniques in Raman Spectroscopy, J. J. Laserna, ed. (Wiley, New York, 1996), pp. 143–225.

Jarvis, J. M.

R. M. Hammaker, A. P. Bohlke, R. D. Freeman, J. A. Graham, J. M. Jarvis, K. J. Latas, D. Lin-Vien, A. N. Mortensen, E. A. Orr, J. D. Tate, D. C. Tilotta, J. S. White, S. L. Wright, J. V. Paukstelis, and W. G. Fateley, in Modern Techniques in Raman Spectroscopy, J. J. Laserna, ed. (Wiley, New York, 1996), pp. 143–225.

Latas, K. J.

R. M. Hammaker, A. P. Bohlke, R. D. Freeman, J. A. Graham, J. M. Jarvis, K. J. Latas, D. Lin-Vien, A. N. Mortensen, E. A. Orr, J. D. Tate, D. C. Tilotta, J. S. White, S. L. Wright, J. V. Paukstelis, and W. G. Fateley, in Modern Techniques in Raman Spectroscopy, J. J. Laserna, ed. (Wiley, New York, 1996), pp. 143–225.

Lin-Vien, D.

R. M. Hammaker, A. P. Bohlke, R. D. Freeman, J. A. Graham, J. M. Jarvis, K. J. Latas, D. Lin-Vien, A. N. Mortensen, E. A. Orr, J. D. Tate, D. C. Tilotta, J. S. White, S. L. Wright, J. V. Paukstelis, and W. G. Fateley, in Modern Techniques in Raman Spectroscopy, J. J. Laserna, ed. (Wiley, New York, 1996), pp. 143–225.

Mortensen, A. N.

R. M. Hammaker, A. P. Bohlke, R. D. Freeman, J. A. Graham, J. M. Jarvis, K. J. Latas, D. Lin-Vien, A. N. Mortensen, E. A. Orr, J. D. Tate, D. C. Tilotta, J. S. White, S. L. Wright, J. V. Paukstelis, and W. G. Fateley, in Modern Techniques in Raman Spectroscopy, J. J. Laserna, ed. (Wiley, New York, 1996), pp. 143–225.

Orr, E. A.

R. M. Hammaker, A. P. Bohlke, R. D. Freeman, J. A. Graham, J. M. Jarvis, K. J. Latas, D. Lin-Vien, A. N. Mortensen, E. A. Orr, J. D. Tate, D. C. Tilotta, J. S. White, S. L. Wright, J. V. Paukstelis, and W. G. Fateley, in Modern Techniques in Raman Spectroscopy, J. J. Laserna, ed. (Wiley, New York, 1996), pp. 143–225.

Paukstelis, J. V.

R. M. Hammaker, A. P. Bohlke, R. D. Freeman, J. A. Graham, J. M. Jarvis, K. J. Latas, D. Lin-Vien, A. N. Mortensen, E. A. Orr, J. D. Tate, D. C. Tilotta, J. S. White, S. L. Wright, J. V. Paukstelis, and W. G. Fateley, in Modern Techniques in Raman Spectroscopy, J. J. Laserna, ed. (Wiley, New York, 1996), pp. 143–225.

Porter, J. L.

R. Sobczyniski, J. L. Porter, R. M. Hammaker, and W. G. Fateley, Laser Focus World 31(3), 75 (1995).

Silver, J. A.

Sobczyniski, R.

R. Sobczyniski, J. L. Porter, R. M. Hammaker, and W. G. Fateley, Laser Focus World 31(3), 75 (1995).

Stanton, A. C.

Tate, J. D.

R. M. Hammaker, A. P. Bohlke, R. D. Freeman, J. A. Graham, J. M. Jarvis, K. J. Latas, D. Lin-Vien, A. N. Mortensen, E. A. Orr, J. D. Tate, D. C. Tilotta, J. S. White, S. L. Wright, J. V. Paukstelis, and W. G. Fateley, in Modern Techniques in Raman Spectroscopy, J. J. Laserna, ed. (Wiley, New York, 1996), pp. 143–225.

Tilotta, D. C.

R. M. Hammaker, A. P. Bohlke, R. D. Freeman, J. A. Graham, J. M. Jarvis, K. J. Latas, D. Lin-Vien, A. N. Mortensen, E. A. Orr, J. D. Tate, D. C. Tilotta, J. S. White, S. L. Wright, J. V. Paukstelis, and W. G. Fateley, in Modern Techniques in Raman Spectroscopy, J. J. Laserna, ed. (Wiley, New York, 1996), pp. 143–225.

White, J. S.

R. M. Hammaker, A. P. Bohlke, R. D. Freeman, J. A. Graham, J. M. Jarvis, K. J. Latas, D. Lin-Vien, A. N. Mortensen, E. A. Orr, J. D. Tate, D. C. Tilotta, J. S. White, S. L. Wright, J. V. Paukstelis, and W. G. Fateley, in Modern Techniques in Raman Spectroscopy, J. J. Laserna, ed. (Wiley, New York, 1996), pp. 143–225.

Wright, S. L.

R. M. Hammaker, A. P. Bohlke, R. D. Freeman, J. A. Graham, J. M. Jarvis, K. J. Latas, D. Lin-Vien, A. N. Mortensen, E. A. Orr, J. D. Tate, D. C. Tilotta, J. S. White, S. L. Wright, J. V. Paukstelis, and W. G. Fateley, in Modern Techniques in Raman Spectroscopy, J. J. Laserna, ed. (Wiley, New York, 1996), pp. 143–225.

Appl. Opt. (1)

Laser Focus World (1)

R. Sobczyniski, J. L. Porter, R. M. Hammaker, and W. G. Fateley, Laser Focus World 31(3), 75 (1995).

Pure Appl. Chem. (1)

IUPAC symbol recommendation in Commission on Spectrochemical and Other Optical Procedures, Pure Appl. Chem. 67, 1745 (1995), Table 1.

Other (1)

R. M. Hammaker, A. P. Bohlke, R. D. Freeman, J. A. Graham, J. M. Jarvis, K. J. Latas, D. Lin-Vien, A. N. Mortensen, E. A. Orr, J. D. Tate, D. C. Tilotta, J. S. White, S. L. Wright, J. V. Paukstelis, and W. G. Fateley, in Modern Techniques in Raman Spectroscopy, J. J. Laserna, ed. (Wiley, New York, 1996), pp. 143–225.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the present experimental layout. Light from a tungsten lamp is collimated and run through a subtractive double spectrometer. The dispersed radiation intersects the 1×4 element mask, with each spectral component encoded with a different frequency, and the time-dependent output is observed with a photomultiplier tube. DSP, digital signal processor.

Fig. 2
Fig. 2

Raw output of the phototubes as a function of time. The top trace is the time-dependent signal transmitted through a red filter; only one of the stripes in the mask is transmitting light, and only a signal frequency is detected. The bottom trace is the time-dependent signal of the full output from the mask (no filters); the four carriers exhibit the expected beating behavior.

Fig. 3
Fig. 3

(a) Dashed curves, spectra of the filters used: red (dotted curve), orange (long-dashed curve), yellow (short-dashed curve), blue (dotted–dashed curve). The solid curves are Gaussian fits to the spectral window of each pixel in the mask. (b) Fourier-transformed output; the dashed curves are for the same filters as in (a). Note that the relative intensities of the frequency peaks follow what is expected from the overlap of the filters and the Gaussian transmission functions.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

It=i=1nIi21+sinωit,

Metrics