Abstract

A high-power (50-MW), kilohertz, picosecond, mid-IR optical parametric amplifier that is pumped by an amplified Ti:sapphire laser and also produces a fixed-frequency visible pulse is described. Mid-IR pulse energies of 40–55  µJ with 0.6–0.8-ps durations and 35-cm-1 bandwidths are reported in the 3650–2800-cm-1 range. The combination of picosecond mid-IR and visible pulses is useful for two-color spectroscopies, which require simultaneous time and frequency resolution. To illustrate the above, we present vibrational relaxation data for the polyatomic molecule nitromethane, using time-resolved infrared Raman spectroscopy.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Elsaesser and W. Kaisser, Annu. Rev. Phys. Chem. 42, 83 (1991).
    [CrossRef]
  2. S. Chen, X. Hong, J. R. Hill, and D. D. Dlott, J. Phys. Chem. 99, 4525 (1995).
    [CrossRef]
  3. R. M. Stratt and M. Maroncelli, J. Phys. Chem. 100, 12981 (1996).
    [CrossRef]
  4. S. Lin and T. Suzuki, Opt. Lett. 21, 579 (1996).
    [CrossRef] [PubMed]
  5. D. E. Gragson, D. S. Alavi, and G. L. Richmond, Opt. Lett. 20, 1991 (1995).
    [CrossRef] [PubMed]
  6. G. M. Gale, G. Gallot, F. Hache, and R. Sander, Opt. Lett. 22, 1253 (1997).
    [CrossRef] [PubMed]
  7. T. Elsaesser, A. Seilmeier, W. Kaiser, P. Koidl, and G. Brandt, Appl. Phys. Lett. 44, 383 (1984).
    [CrossRef]
  8. A. Tokmakoff, C. D. Marshall, and M. D. Fayer, J. Opt. Soc. Am. B 10, 1785 (1993).
    [CrossRef]
  9. A. H. Kung, Opt. Lett. 20, 1107 (1995).
    [CrossRef] [PubMed]
  10. H. Vanherzeele, Appl. Opt. 29, 2246 (1990).
    [CrossRef] [PubMed]
  11. V. Petrov and F. Noack, J. Opt. Soc. Am. B 12, 2214 (1995).
    [CrossRef]
  12. M. K. Reed, M. K. Steiner-Shepard, and D. K. Negus, Opt. Lett. 19, 1855 (1994).
    [CrossRef]
  13. S. Chen, W. A. Tolbert, and D. D. Dlott, J. Phys. Chem. 98, 7759 (1994).
    [CrossRef]

1997 (1)

1996 (2)

R. M. Stratt and M. Maroncelli, J. Phys. Chem. 100, 12981 (1996).
[CrossRef]

S. Lin and T. Suzuki, Opt. Lett. 21, 579 (1996).
[CrossRef] [PubMed]

1995 (4)

1994 (2)

M. K. Reed, M. K. Steiner-Shepard, and D. K. Negus, Opt. Lett. 19, 1855 (1994).
[CrossRef]

S. Chen, W. A. Tolbert, and D. D. Dlott, J. Phys. Chem. 98, 7759 (1994).
[CrossRef]

1993 (1)

1991 (1)

T. Elsaesser and W. Kaisser, Annu. Rev. Phys. Chem. 42, 83 (1991).
[CrossRef]

1990 (1)

1984 (1)

T. Elsaesser, A. Seilmeier, W. Kaiser, P. Koidl, and G. Brandt, Appl. Phys. Lett. 44, 383 (1984).
[CrossRef]

Alavi, D. S.

Brandt, G.

T. Elsaesser, A. Seilmeier, W. Kaiser, P. Koidl, and G. Brandt, Appl. Phys. Lett. 44, 383 (1984).
[CrossRef]

Chen, S.

S. Chen, X. Hong, J. R. Hill, and D. D. Dlott, J. Phys. Chem. 99, 4525 (1995).
[CrossRef]

S. Chen, W. A. Tolbert, and D. D. Dlott, J. Phys. Chem. 98, 7759 (1994).
[CrossRef]

Dlott, D. D.

S. Chen, X. Hong, J. R. Hill, and D. D. Dlott, J. Phys. Chem. 99, 4525 (1995).
[CrossRef]

S. Chen, W. A. Tolbert, and D. D. Dlott, J. Phys. Chem. 98, 7759 (1994).
[CrossRef]

Elsaesser, T.

T. Elsaesser and W. Kaisser, Annu. Rev. Phys. Chem. 42, 83 (1991).
[CrossRef]

T. Elsaesser, A. Seilmeier, W. Kaiser, P. Koidl, and G. Brandt, Appl. Phys. Lett. 44, 383 (1984).
[CrossRef]

Fayer, M. D.

Gale, G. M.

Gallot, G.

Gragson, D. E.

Hache, F.

Hill, J. R.

S. Chen, X. Hong, J. R. Hill, and D. D. Dlott, J. Phys. Chem. 99, 4525 (1995).
[CrossRef]

Hong, X.

S. Chen, X. Hong, J. R. Hill, and D. D. Dlott, J. Phys. Chem. 99, 4525 (1995).
[CrossRef]

Kaiser, W.

T. Elsaesser, A. Seilmeier, W. Kaiser, P. Koidl, and G. Brandt, Appl. Phys. Lett. 44, 383 (1984).
[CrossRef]

Kaisser, W.

T. Elsaesser and W. Kaisser, Annu. Rev. Phys. Chem. 42, 83 (1991).
[CrossRef]

Koidl, P.

T. Elsaesser, A. Seilmeier, W. Kaiser, P. Koidl, and G. Brandt, Appl. Phys. Lett. 44, 383 (1984).
[CrossRef]

Kung, A. H.

Lin, S.

Maroncelli, M.

R. M. Stratt and M. Maroncelli, J. Phys. Chem. 100, 12981 (1996).
[CrossRef]

Marshall, C. D.

Negus, D. K.

Noack, F.

Petrov, V.

Reed, M. K.

Richmond, G. L.

Sander, R.

Seilmeier, A.

T. Elsaesser, A. Seilmeier, W. Kaiser, P. Koidl, and G. Brandt, Appl. Phys. Lett. 44, 383 (1984).
[CrossRef]

Steiner-Shepard, M. K.

Stratt, R. M.

R. M. Stratt and M. Maroncelli, J. Phys. Chem. 100, 12981 (1996).
[CrossRef]

Suzuki, T.

Tokmakoff, A.

Tolbert, W. A.

S. Chen, W. A. Tolbert, and D. D. Dlott, J. Phys. Chem. 98, 7759 (1994).
[CrossRef]

Vanherzeele, H.

Annu. Rev. Phys. Chem. (1)

T. Elsaesser and W. Kaisser, Annu. Rev. Phys. Chem. 42, 83 (1991).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

T. Elsaesser, A. Seilmeier, W. Kaiser, P. Koidl, and G. Brandt, Appl. Phys. Lett. 44, 383 (1984).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. (3)

S. Chen, X. Hong, J. R. Hill, and D. D. Dlott, J. Phys. Chem. 99, 4525 (1995).
[CrossRef]

R. M. Stratt and M. Maroncelli, J. Phys. Chem. 100, 12981 (1996).
[CrossRef]

S. Chen, W. A. Tolbert, and D. D. Dlott, J. Phys. Chem. 98, 7759 (1994).
[CrossRef]

Opt. Lett. (5)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Vibrational spectrum of liquid NM. Top, mid-IR absorption. The C–H stretching transition near 3000  cm-1 (*) is pumped by the OPA in our experiments. Bottom, NM Raman spectrum taken with a cw laser, where the spectral resolution is limited by the NM natural linewidth (dashed curve), and NM spectrum taken with 532-nm pulses from the OPA and with resolution limited by the OPA bandwidth (solid curve). The Raman transitions indicated by arrows are probed in the IR Raman experiments.

Fig. 2
Fig. 2

Block diagram of the OPA and IR Raman experiment: CPA, chirped-pulse amplifier; YAG, diode-pumped single-longitudinal-mode Q-switched Nd:YAG laser; KTA's, potassium titanyl arsenate crystals; BBO, β-barium borate crystal; PMT, photomultiplier tube; HNF, holographic notch filter.

Fig. 3
Fig. 3

Energy of mid-IR idler pulses versus wavelength. The displayed spectrum for 3000-cm-1 pulses has a FWHM of 35 cm-1. The inset shows a cross correlation between mid-IR and 532-nm pulses with a FWHM of 0.8  ps.

Fig. 4
Fig. 4

IR Raman data on liquid NM at 295  K. The apparatus response is obtained by use of SFG. The results indicate that a vibrational cascade occurs in NM.

Metrics