Abstract

We present a graphic method of analyzing the spectral displacements of a long-period fiber grating as a function of ambient index. Mode dependence of the maximum displacement, disappearance of a particular resonance peak, and spectral behavior when the ambient index is larger than that of the cladding material are investigated and compared with experimental results.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
    [CrossRef]
  2. A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, and P. J. Lemaire, Opt. Lett. 21, 336 (1996).
    [CrossRef] [PubMed]
  3. S. A. Vasiliev, E. M. Dianov, D. Varelas, H. G. Limberger, and R. P. Salathé, Opt. Lett. 21, 1830 (1996).
    [CrossRef] [PubMed]
  4. V. Bhatia and A. M. Vengsarkar, Opt. Lett. 21, 692 (1996).
    [CrossRef] [PubMed]
  5. H. J. Patrick, A. D. Kersey, F. Bucholtz, K. J. Ewing, J. B. Judkins, and A. M. Vengsarkar, in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), p. 420.
  6. M. J. Adams, An Introduction to Optical Waveguides (Wiley-Interscience, New York, 1981), pp. 223–233.

1996

Adams, M. J.

M. J. Adams, An Introduction to Optical Waveguides (Wiley-Interscience, New York, 1981), pp. 223–233.

Bhatia, V.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

V. Bhatia and A. M. Vengsarkar, Opt. Lett. 21, 692 (1996).
[CrossRef] [PubMed]

Bucholtz, F.

H. J. Patrick, A. D. Kersey, F. Bucholtz, K. J. Ewing, J. B. Judkins, and A. M. Vengsarkar, in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), p. 420.

Dianov, E. M.

Erdogan, T.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Ewing, K. J.

H. J. Patrick, A. D. Kersey, F. Bucholtz, K. J. Ewing, J. B. Judkins, and A. M. Vengsarkar, in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), p. 420.

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, and P. J. Lemaire, Opt. Lett. 21, 336 (1996).
[CrossRef] [PubMed]

H. J. Patrick, A. D. Kersey, F. Bucholtz, K. J. Ewing, J. B. Judkins, and A. M. Vengsarkar, in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), p. 420.

Kersey, A. D.

H. J. Patrick, A. D. Kersey, F. Bucholtz, K. J. Ewing, J. B. Judkins, and A. M. Vengsarkar, in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), p. 420.

Lemaire, P. J.

A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, and P. J. Lemaire, Opt. Lett. 21, 336 (1996).
[CrossRef] [PubMed]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Limberger, H. G.

Patrick, H. J.

H. J. Patrick, A. D. Kersey, F. Bucholtz, K. J. Ewing, J. B. Judkins, and A. M. Vengsarkar, in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), p. 420.

Pedrazzani, J. R.

Salathé, R. P.

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Varelas, D.

Vasiliev, S. A.

Vengsarkar, A. M.

V. Bhatia and A. M. Vengsarkar, Opt. Lett. 21, 692 (1996).
[CrossRef] [PubMed]

A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, and P. J. Lemaire, Opt. Lett. 21, 336 (1996).
[CrossRef] [PubMed]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

H. J. Patrick, A. D. Kersey, F. Bucholtz, K. J. Ewing, J. B. Judkins, and A. M. Vengsarkar, in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), p. 420.

J. Lightwave Technol.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Opt. Lett.

Other

H. J. Patrick, A. D. Kersey, F. Bucholtz, K. J. Ewing, J. B. Judkins, and A. M. Vengsarkar, in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), p. 420.

M. J. Adams, An Introduction to Optical Waveguides (Wiley-Interscience, New York, 1981), pp. 223–233.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Graphic method for analysis of the spectral displacement of a LPG. The intersections of the dotted and the solid curves represent the wavelengths of the resonance peaks. The solid curves show the phase shifts that are due to TIR at the cladding–ambient interface when the ambient index is a, 1.0; b, 1.44; c, 1.4425; d, 1.4436.

Fig. 2
Fig. 2

Resonance wavelengths as a function of ambient index. The highest-order mode has the widest spectral displacement.

Fig. 3
Fig. 3

Measured spectral displacement of the fourth-order resonance peak. The solid curve is the calculated curve.

Fig. 4
Fig. 4

Transmission spectrum of a LPG measured when the ambient index is (a) 1.0, (b) 1.456, (e) 1.64. The indices of (c) and (d) ranged from 1.456 to 1.46.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

λp=n0lco-n0pclΛ,
2π/λDcore ncore2-n0lco21/2-π2=2 cos-1 ncore2-n0lco2ncore2-nclad21/2,
2π/λpDclad nclad2-n0pcl21/2-p-342π=2 cos-1 nclad2-n0pcl2nclad2-namb21/2,
λc=n0lco-nambΛ.

Metrics