Abstract

We analyze the transmissivity of a nonlinear filter that is based on intensity-dependent polarization rotation in a birefringent fiber. It is shown that the transmissivity of the element depends not only on the intensity of the incident light but also on the time behavior of its amplitude. Such an element can be used as a derivator, an element that transmits only variations in the input pulse. The filter can also be used for obtaining lasers that generate a train of intense noiselike pulses with a broadband spectrum and a short coherence length.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. D. Maker, R. W. Terhune, and C. M. Savage, Phys. Rev. Lett. 12, 507 (1964).
    [CrossRef]
  2. C. Menyuk, Opt. Lett. 12, 614 (1987).
    [CrossRef] [PubMed]
  3. R. H. Stolen, J. Botineau, and A. Ashkin, Opt. Lett. 7, 512 (1982).
    [CrossRef] [PubMed]
  4. M. E. Fermann, M. Hofer, F. Harbel, A. Schmidt, and L. Turi, Opt. Lett. 16, 244 (1991); M. E. Fermann, Appl. Phys. B 58, 197 (1994).
    [CrossRef] [PubMed]
  5. H. A. Haus, E. P. Ippen, and K. Tamura, IEEE J. Lightwave Technol. 30, 200 (1994).
  6. M. Hofer, M. H. Ober, F. Harberl, and M. E. Fermann, IEEE J. Lightwave Technol. 28, 720 (1992).
  7. M. Horowitz, Y. Barad, and Y. Silberberg, Opt. Lett. 22, 799 (1997).
    [CrossRef] [PubMed]
  8. N. Friedman, A. Eyal, and M. Tur, IEEE J. Quantum Electron. 33, 642 (1997).
    [CrossRef]
  9. M. N. Islam, C. D. Poole, and J. P. Gordon, Opt. Lett. 14, 1011 (1989).
    [CrossRef] [PubMed]
  10. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif., 1995).
  11. H. G. Winful, Appl. Phys. Lett. 47, 213 (1985); S. F. Feldman, D. A. Weinberger, and H. G. Winful, J. Opt. Soc. Am. B 10, 1191 (1993).
    [CrossRef]
  12. L. F. Mollenaur, R. H. Stolen, J. P. Gordon, and W. J. Tomlinson, Opt. Lett. 8, 289 (1983).
    [CrossRef]

1997

M. Horowitz, Y. Barad, and Y. Silberberg, Opt. Lett. 22, 799 (1997).
[CrossRef] [PubMed]

N. Friedman, A. Eyal, and M. Tur, IEEE J. Quantum Electron. 33, 642 (1997).
[CrossRef]

1994

H. A. Haus, E. P. Ippen, and K. Tamura, IEEE J. Lightwave Technol. 30, 200 (1994).

1992

M. Hofer, M. H. Ober, F. Harberl, and M. E. Fermann, IEEE J. Lightwave Technol. 28, 720 (1992).

1991

1989

1987

1985

H. G. Winful, Appl. Phys. Lett. 47, 213 (1985); S. F. Feldman, D. A. Weinberger, and H. G. Winful, J. Opt. Soc. Am. B 10, 1191 (1993).
[CrossRef]

1983

1982

1964

P. D. Maker, R. W. Terhune, and C. M. Savage, Phys. Rev. Lett. 12, 507 (1964).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif., 1995).

Ashkin, A.

Barad, Y.

Botineau, J.

Eyal, A.

N. Friedman, A. Eyal, and M. Tur, IEEE J. Quantum Electron. 33, 642 (1997).
[CrossRef]

Fermann, M. E.

Friedman, N.

N. Friedman, A. Eyal, and M. Tur, IEEE J. Quantum Electron. 33, 642 (1997).
[CrossRef]

Gordon, J. P.

Harbel, F.

Harberl, F.

M. Hofer, M. H. Ober, F. Harberl, and M. E. Fermann, IEEE J. Lightwave Technol. 28, 720 (1992).

Haus, H. A.

H. A. Haus, E. P. Ippen, and K. Tamura, IEEE J. Lightwave Technol. 30, 200 (1994).

Hofer, M.

Horowitz, M.

Ippen, E. P.

H. A. Haus, E. P. Ippen, and K. Tamura, IEEE J. Lightwave Technol. 30, 200 (1994).

Islam, M. N.

Maker, P. D.

P. D. Maker, R. W. Terhune, and C. M. Savage, Phys. Rev. Lett. 12, 507 (1964).
[CrossRef]

Menyuk, C.

Mollenaur, L. F.

Ober, M. H.

M. Hofer, M. H. Ober, F. Harberl, and M. E. Fermann, IEEE J. Lightwave Technol. 28, 720 (1992).

Poole, C. D.

Savage, C. M.

P. D. Maker, R. W. Terhune, and C. M. Savage, Phys. Rev. Lett. 12, 507 (1964).
[CrossRef]

Schmidt, A.

Silberberg, Y.

Stolen, R. H.

Tamura, K.

H. A. Haus, E. P. Ippen, and K. Tamura, IEEE J. Lightwave Technol. 30, 200 (1994).

Terhune, R. W.

P. D. Maker, R. W. Terhune, and C. M. Savage, Phys. Rev. Lett. 12, 507 (1964).
[CrossRef]

Tomlinson, W. J.

Tur, M.

N. Friedman, A. Eyal, and M. Tur, IEEE J. Quantum Electron. 33, 642 (1997).
[CrossRef]

Turi, L.

Winful, H. G.

H. G. Winful, Appl. Phys. Lett. 47, 213 (1985); S. F. Feldman, D. A. Weinberger, and H. G. Winful, J. Opt. Soc. Am. B 10, 1191 (1993).
[CrossRef]

Appl. Phys. Lett.

H. G. Winful, Appl. Phys. Lett. 47, 213 (1985); S. F. Feldman, D. A. Weinberger, and H. G. Winful, J. Opt. Soc. Am. B 10, 1191 (1993).
[CrossRef]

IEEE J. Lightwave Technol.

H. A. Haus, E. P. Ippen, and K. Tamura, IEEE J. Lightwave Technol. 30, 200 (1994).

M. Hofer, M. H. Ober, F. Harberl, and M. E. Fermann, IEEE J. Lightwave Technol. 28, 720 (1992).

IEEE J. Quantum Electron.

N. Friedman, A. Eyal, and M. Tur, IEEE J. Quantum Electron. 33, 642 (1997).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

P. D. Maker, R. W. Terhune, and C. M. Savage, Phys. Rev. Lett. 12, 507 (1964).
[CrossRef]

Other

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif., 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic description of the nonlinear device: Bi-Fi, birefringent fiber with principal axes x and y; P, polarizer. The input is assumed to be linearly polarized at an angle of θ with the x axis and is perpendicular to the polarizer axis.

Fig. 2
Fig. 2

Normalized output intensity Ioutt/Iin0, where Ioutt is the output intensity for an input Gaussian pulse calculated for various input intensities Iin0: (a) 0.02, 1.3, 2.0, 3.1; (b) 4.5, 6. 2δl/T0=0.64, where T0 is the width of the Gaussian pulse, θ=45°, γ=1, l=4/γ, and d=0.

Fig. 3
Fig. 3

Normalized output intensity Ioutt/Iin0 for a Gaussian pulse calculated for various normalized PMD's, 2δl/T0: (a) 0.04, 0.1, 0.2, 0.6; (b) 1.8, 4. Iin=3, θ=45°, γ=1, l=4/γ, and d=0.

Fig. 4
Fig. 4

Maximum normalized output intensity versus the normalized PMD 2δ/T0. (a) d=0, input intensities Iin=0.1, 0.32, 1.3, 2.4, 4.5, 6. (b) Iin=2.0; dispersion parameter d=-1.4, -1, -0.5, 0, 0.1; l=4/γ.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Ajz+δjAjt+i2d2Ajt2=iγAj+23A3-j2Aj,
Aoutt=-A1l, texpiβ1lsin θ+A2l, texpiβ2lcos θ.
Ajl, t=Aj0, t-δjlexpiγAj0, t-δjl2l×expi23γ-l+l12A3-j0, t-δz2dz.
Ioutt+2δl=Δ2 Amt4+Am2t+AmtΔAmt×sin2ϕNLt+Δϕt2,
Iout=δl2I-1 I2+4Iϕ2+4γlII2ϕ+γlI,

Metrics