Abstract

The second-order nonlinear optical coefficients d33, d31, and d15 of KTa0.52Nb0.48O3 epitaxial thin films grown upon MgO were studied by the standard Maker fringe method of an anisotropic medium. The measured d33=-84 pm/V is 2.8 times the d33 of LiNbO3. The refractive indices ne and no at several wavelengths were determined by TE and TM waveguide mode measurements. The data presented here point out the excellent qualities of KTa1-xNbxO3 films for use in integrated optics applications.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Haas and R. Johannes, Appl. Opt. 6, 2007 (1967).
    [CrossRef] [PubMed]
  2. J. Wang, Q. Guan, Y. Liu, J. Wei, D. Wang, Y. Lian, H. Yang, and P. Ye, Appl. Phys. Lett. 61, 2761 (1992).
    [CrossRef]
  3. J. Hulliger, R. Gutmann, and P. Wagli, Thin Solid Films 175, 201 (1989).
    [CrossRef]
  4. S. Yilmaz, T. Venkatesan, and A. Gerhard-Multhaupt, Appl. Phys. Lett. 56, 2479 (1991).
    [CrossRef]
  5. H. Y. Zhang, X. H. He, Y. H. Shih, M. Schurman, Z. C. Feng, and R. A. Stall, Opt. Lett. 21, 1529 (1996).
    [CrossRef] [PubMed]
  6. P. Gunter, Phys. Rep. 93, 199 (1982).
    [CrossRef]
  7. J. Jerphagnon and S. K. Kurtz, J. Appl. Phys. 41, 1667 (1970).
    [CrossRef]
  8. W. N. Herman and L. M. Hayden, J. Opt. Soc. Am. B 12, 1 (1995).
    [CrossRef]

1996

1995

W. N. Herman and L. M. Hayden, J. Opt. Soc. Am. B 12, 1 (1995).
[CrossRef]

1992

J. Wang, Q. Guan, Y. Liu, J. Wei, D. Wang, Y. Lian, H. Yang, and P. Ye, Appl. Phys. Lett. 61, 2761 (1992).
[CrossRef]

1991

S. Yilmaz, T. Venkatesan, and A. Gerhard-Multhaupt, Appl. Phys. Lett. 56, 2479 (1991).
[CrossRef]

1989

J. Hulliger, R. Gutmann, and P. Wagli, Thin Solid Films 175, 201 (1989).
[CrossRef]

1982

P. Gunter, Phys. Rep. 93, 199 (1982).
[CrossRef]

1970

J. Jerphagnon and S. K. Kurtz, J. Appl. Phys. 41, 1667 (1970).
[CrossRef]

1967

Feng, Z. C.

Gerhard-Multhaupt, A.

S. Yilmaz, T. Venkatesan, and A. Gerhard-Multhaupt, Appl. Phys. Lett. 56, 2479 (1991).
[CrossRef]

Guan, Q.

J. Wang, Q. Guan, Y. Liu, J. Wei, D. Wang, Y. Lian, H. Yang, and P. Ye, Appl. Phys. Lett. 61, 2761 (1992).
[CrossRef]

Gunter, P.

P. Gunter, Phys. Rep. 93, 199 (1982).
[CrossRef]

Gutmann, R.

J. Hulliger, R. Gutmann, and P. Wagli, Thin Solid Films 175, 201 (1989).
[CrossRef]

Haas, W.

Hayden, L. M.

W. N. Herman and L. M. Hayden, J. Opt. Soc. Am. B 12, 1 (1995).
[CrossRef]

He, X. H.

Herman, W. N.

W. N. Herman and L. M. Hayden, J. Opt. Soc. Am. B 12, 1 (1995).
[CrossRef]

Hulliger, J.

J. Hulliger, R. Gutmann, and P. Wagli, Thin Solid Films 175, 201 (1989).
[CrossRef]

Jerphagnon, J.

J. Jerphagnon and S. K. Kurtz, J. Appl. Phys. 41, 1667 (1970).
[CrossRef]

Johannes, R.

Kurtz, S. K.

J. Jerphagnon and S. K. Kurtz, J. Appl. Phys. 41, 1667 (1970).
[CrossRef]

Lian, Y.

J. Wang, Q. Guan, Y. Liu, J. Wei, D. Wang, Y. Lian, H. Yang, and P. Ye, Appl. Phys. Lett. 61, 2761 (1992).
[CrossRef]

Liu, Y.

J. Wang, Q. Guan, Y. Liu, J. Wei, D. Wang, Y. Lian, H. Yang, and P. Ye, Appl. Phys. Lett. 61, 2761 (1992).
[CrossRef]

Schurman, M.

Shih, Y. H.

Stall, R. A.

Venkatesan, T.

S. Yilmaz, T. Venkatesan, and A. Gerhard-Multhaupt, Appl. Phys. Lett. 56, 2479 (1991).
[CrossRef]

Wagli, P.

J. Hulliger, R. Gutmann, and P. Wagli, Thin Solid Films 175, 201 (1989).
[CrossRef]

Wang, D.

J. Wang, Q. Guan, Y. Liu, J. Wei, D. Wang, Y. Lian, H. Yang, and P. Ye, Appl. Phys. Lett. 61, 2761 (1992).
[CrossRef]

Wang, J.

J. Wang, Q. Guan, Y. Liu, J. Wei, D. Wang, Y. Lian, H. Yang, and P. Ye, Appl. Phys. Lett. 61, 2761 (1992).
[CrossRef]

Wei, J.

J. Wang, Q. Guan, Y. Liu, J. Wei, D. Wang, Y. Lian, H. Yang, and P. Ye, Appl. Phys. Lett. 61, 2761 (1992).
[CrossRef]

Yang, H.

J. Wang, Q. Guan, Y. Liu, J. Wei, D. Wang, Y. Lian, H. Yang, and P. Ye, Appl. Phys. Lett. 61, 2761 (1992).
[CrossRef]

Ye, P.

J. Wang, Q. Guan, Y. Liu, J. Wei, D. Wang, Y. Lian, H. Yang, and P. Ye, Appl. Phys. Lett. 61, 2761 (1992).
[CrossRef]

Yilmaz, S.

S. Yilmaz, T. Venkatesan, and A. Gerhard-Multhaupt, Appl. Phys. Lett. 56, 2479 (1991).
[CrossRef]

Zhang, H. Y.

Appl. Opt.

Appl. Phys. Lett.

J. Wang, Q. Guan, Y. Liu, J. Wei, D. Wang, Y. Lian, H. Yang, and P. Ye, Appl. Phys. Lett. 61, 2761 (1992).
[CrossRef]

S. Yilmaz, T. Venkatesan, and A. Gerhard-Multhaupt, Appl. Phys. Lett. 56, 2479 (1991).
[CrossRef]

J. Appl. Phys.

J. Jerphagnon and S. K. Kurtz, J. Appl. Phys. 41, 1667 (1970).
[CrossRef]

J. Opt. Soc. Am. B

W. N. Herman and L. M. Hayden, J. Opt. Soc. Am. B 12, 1 (1995).
[CrossRef]

Opt. Lett.

Phys. Rep.

P. Gunter, Phys. Rep. 93, 199 (1982).
[CrossRef]

Thin Solid Films

J. Hulliger, R. Gutmann, and P. Wagli, Thin Solid Films 175, 201 (1989).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

TM mode patterns of KTN film upon a MgO substrate: a, before poling and b, after poling. The figures were obtained at 632.8  nm.

Fig. 2
Fig. 2

Measured no (no) and ne (ne) of KTN epitaxial film upon MgO substrate and their dispersion.

Fig. 3
Fig. 3

SHG Maker fringes P2ωpp, P2ωsp, and P2ω45°s of a 0.75-µm-thick KTN epitaxial film versus incident angle θ.

Tables (1)

Tables Icon

Table 1 Measured no and ne of KTN Film upon a MgO Substrate at Several Wavelengths

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

p2ω45°s, p2ωsp, p2ωpp,
P2ωαβ=128πcAtaf1α4 tfs2β2 tsa2β2n22θ2cos2 γ2 cos2θ2-γ2Pω22πLλ2×deff2n2θ1n2o4 n12θ1-n22θ2n12θ1-n22θ12sin2 ΨΨ2,
deffsp=d31 sinθ2-γ2,
deff45°s=d15 sinθ1-γ1,
deffpp=d15 cosθ2-γ2sin 2θ1-γ1+sinθ2-γ2d31 cos2θ1-γ1+d33 sin2θ1-γ1.
tan γm=12nm2θmsin 2θm1nmo2-1nme2,

Metrics