Abstract

The characteristics of noise in fiber-optic gyros are analyzed quantitatively. Based on its physical characteristics and on autocorrelation function evidence, the noise is modeled as the addition of fractal Brownian motion (FBM) and Gaussian white noise (GWN). The value of self-similarlity parameter H in FBM and the intensity of GWN, σw, in the model are robustly determined with an algorithm based on an orthonormal wavelet transform, which demonstrates well the coexistence of the long- and short-term correlation components of the gyro noise. Moreover, it is revealed that FBM dominates the gyro noise, whereas the GWN is minor.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Vacek, Proc. SPIE 2510, 92 (1995).
    [CrossRef]
  2. K. H. Wanser, Proc. SPIE 838, 121 (1987).
    [CrossRef]
  3. M. S. Bielas, Proc. SPIE 2292, 240 (1994).
    [CrossRef]
  4. B. B. Mandelbrot and V. W. J. Ness, SIAM Rev. 10, 422 (1968).
    [CrossRef]
  5. I. Daubechies, Commun. Pure Appl. Math. 41, 909 (1988).
    [CrossRef]
  6. S. G. Mallat, Trans. Am. Math. Soc. 315, 69 (1989).
  7. S. G. Mallat, IEEE Trans. Pattern Anal. Mach. Intell. 11, 674 (1989).
    [CrossRef]
  8. P. Flandrin, IEEE Trans. Inf. Theory 38, 2 (1992).
    [CrossRef]
  9. G. W. Wornell and A. V. Oppenheim, IEEE Trans. Signal Process. 40, 611 (1992).
    [CrossRef]

1995 (1)

R. Vacek, Proc. SPIE 2510, 92 (1995).
[CrossRef]

1994 (1)

M. S. Bielas, Proc. SPIE 2292, 240 (1994).
[CrossRef]

1992 (2)

P. Flandrin, IEEE Trans. Inf. Theory 38, 2 (1992).
[CrossRef]

G. W. Wornell and A. V. Oppenheim, IEEE Trans. Signal Process. 40, 611 (1992).
[CrossRef]

1989 (2)

S. G. Mallat, Trans. Am. Math. Soc. 315, 69 (1989).

S. G. Mallat, IEEE Trans. Pattern Anal. Mach. Intell. 11, 674 (1989).
[CrossRef]

1988 (1)

I. Daubechies, Commun. Pure Appl. Math. 41, 909 (1988).
[CrossRef]

1987 (1)

K. H. Wanser, Proc. SPIE 838, 121 (1987).
[CrossRef]

1968 (1)

B. B. Mandelbrot and V. W. J. Ness, SIAM Rev. 10, 422 (1968).
[CrossRef]

Bielas, M. S.

M. S. Bielas, Proc. SPIE 2292, 240 (1994).
[CrossRef]

Daubechies, I.

I. Daubechies, Commun. Pure Appl. Math. 41, 909 (1988).
[CrossRef]

Flandrin, P.

P. Flandrin, IEEE Trans. Inf. Theory 38, 2 (1992).
[CrossRef]

Mallat, S. G.

S. G. Mallat, Trans. Am. Math. Soc. 315, 69 (1989).

S. G. Mallat, IEEE Trans. Pattern Anal. Mach. Intell. 11, 674 (1989).
[CrossRef]

Mandelbrot, B. B.

B. B. Mandelbrot and V. W. J. Ness, SIAM Rev. 10, 422 (1968).
[CrossRef]

Ness, V. W. J.

B. B. Mandelbrot and V. W. J. Ness, SIAM Rev. 10, 422 (1968).
[CrossRef]

Oppenheim, A. V.

G. W. Wornell and A. V. Oppenheim, IEEE Trans. Signal Process. 40, 611 (1992).
[CrossRef]

Vacek, R.

R. Vacek, Proc. SPIE 2510, 92 (1995).
[CrossRef]

Wanser, K. H.

K. H. Wanser, Proc. SPIE 838, 121 (1987).
[CrossRef]

Wornell, G. W.

G. W. Wornell and A. V. Oppenheim, IEEE Trans. Signal Process. 40, 611 (1992).
[CrossRef]

Commun. Pure Appl. Math. (1)

I. Daubechies, Commun. Pure Appl. Math. 41, 909 (1988).
[CrossRef]

IEEE Trans. Inf. Theory (1)

P. Flandrin, IEEE Trans. Inf. Theory 38, 2 (1992).
[CrossRef]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

S. G. Mallat, IEEE Trans. Pattern Anal. Mach. Intell. 11, 674 (1989).
[CrossRef]

IEEE Trans. Signal Process. (1)

G. W. Wornell and A. V. Oppenheim, IEEE Trans. Signal Process. 40, 611 (1992).
[CrossRef]

Proc. SPIE (3)

R. Vacek, Proc. SPIE 2510, 92 (1995).
[CrossRef]

K. H. Wanser, Proc. SPIE 838, 121 (1987).
[CrossRef]

M. S. Bielas, Proc. SPIE 2292, 240 (1994).
[CrossRef]

SIAM Rev. (1)

B. B. Mandelbrot and V. W. J. Ness, SIAM Rev. 10, 422 (1968).
[CrossRef]

Trans. Am. Math. Soc. (1)

S. G. Mallat, Trans. Am. Math. Soc. 315, 69 (1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Typical gyro noise signal  1. (b) Results of the signal analysis.

Fig. 2
Fig. 2

(a) Typical gyro noise signal 2. (b) Results of the signal analysis.

Fig. 3
Fig. 3

(a) Typical gyro noise signal  3. (b) Results of the signal analysis.

Fig. 4
Fig. 4

(a) Typical gyro noise signal  4. (b) Results of the signal analysis.

Fig. 5
Fig. 5

Scheme of an open-loop fiber gyro. PIN, p-i-n diode; PZT, piezoelectric transducer.

Tables (1)

Tables Icon

Table 1 Results of Parameter Estimation

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

BHt=1ΓH+1/2-0t-sH-1/2--sH-1/2×dBs+0tt-sH-1/2dBs,
Rwt, s=σw2δt-s.
XtBHt+Wt,
xt=m=-+n=-+dnmψnmt, dnm=-+xtψnmtdt,
ψnmt=2m/2ψ2mt-n
var dnm=σ2β-m+σw2, β=22H+1,

Metrics