Abstract

We study nonlinear pulse propagation in an optical transmission system with dispersion compensation. A chirped nonlinear pulse can propagate in such a system, but eventually it decays into dispersive waves in a way similar to the tunneling effect in quantum mechanics. The pulse consists of a quadratic potential that is due to chirp in addition to the usual self-trapping potential and is responsible for the power enhancement and the decay.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. J. Smith, F. M. Knox, N. J. Doran, K. J. Blow, and I. Bennion, Electron. Lett. 32, 54 (1996).
    [Crossref]
  2. M. Suzuki, I. Morita, N. Edagawa, S. Yamamoto, H. Taga, and S. Akiba, Electron. Lett. 31, 2027 (1995).
    [Crossref]
  3. M. Nakazawa and H. Kubota, Electron. Lett. 31, 216 (1995).
    [Crossref]
  4. I. Gabitov and S. K. Turitsyn, JETP Lett. 63, 863 (1996); Opt. Lett. 21, 327 (1996).
    [Crossref]
  5. T. Georges and B. Charbonnier, Opt. Lett. 21, 1232 (1996).
    [Crossref] [PubMed]
  6. A. Hasegawa and Y. Kodama, Opt. Lett. 15, 1443 (1990).
    [Crossref] [PubMed]

1996 (3)

N. J. Smith, F. M. Knox, N. J. Doran, K. J. Blow, and I. Bennion, Electron. Lett. 32, 54 (1996).
[Crossref]

I. Gabitov and S. K. Turitsyn, JETP Lett. 63, 863 (1996); Opt. Lett. 21, 327 (1996).
[Crossref]

T. Georges and B. Charbonnier, Opt. Lett. 21, 1232 (1996).
[Crossref] [PubMed]

1995 (2)

M. Suzuki, I. Morita, N. Edagawa, S. Yamamoto, H. Taga, and S. Akiba, Electron. Lett. 31, 2027 (1995).
[Crossref]

M. Nakazawa and H. Kubota, Electron. Lett. 31, 216 (1995).
[Crossref]

1990 (1)

Akiba, S.

M. Suzuki, I. Morita, N. Edagawa, S. Yamamoto, H. Taga, and S. Akiba, Electron. Lett. 31, 2027 (1995).
[Crossref]

Bennion, I.

N. J. Smith, F. M. Knox, N. J. Doran, K. J. Blow, and I. Bennion, Electron. Lett. 32, 54 (1996).
[Crossref]

Blow, K. J.

N. J. Smith, F. M. Knox, N. J. Doran, K. J. Blow, and I. Bennion, Electron. Lett. 32, 54 (1996).
[Crossref]

Charbonnier, B.

Doran, N. J.

N. J. Smith, F. M. Knox, N. J. Doran, K. J. Blow, and I. Bennion, Electron. Lett. 32, 54 (1996).
[Crossref]

Edagawa, N.

M. Suzuki, I. Morita, N. Edagawa, S. Yamamoto, H. Taga, and S. Akiba, Electron. Lett. 31, 2027 (1995).
[Crossref]

Gabitov, I.

I. Gabitov and S. K. Turitsyn, JETP Lett. 63, 863 (1996); Opt. Lett. 21, 327 (1996).
[Crossref]

Georges, T.

Hasegawa, A.

Knox, F. M.

N. J. Smith, F. M. Knox, N. J. Doran, K. J. Blow, and I. Bennion, Electron. Lett. 32, 54 (1996).
[Crossref]

Kodama, Y.

Kubota, H.

M. Nakazawa and H. Kubota, Electron. Lett. 31, 216 (1995).
[Crossref]

Morita, I.

M. Suzuki, I. Morita, N. Edagawa, S. Yamamoto, H. Taga, and S. Akiba, Electron. Lett. 31, 2027 (1995).
[Crossref]

Nakazawa, M.

M. Nakazawa and H. Kubota, Electron. Lett. 31, 216 (1995).
[Crossref]

Smith, N. J.

N. J. Smith, F. M. Knox, N. J. Doran, K. J. Blow, and I. Bennion, Electron. Lett. 32, 54 (1996).
[Crossref]

Suzuki, M.

M. Suzuki, I. Morita, N. Edagawa, S. Yamamoto, H. Taga, and S. Akiba, Electron. Lett. 31, 2027 (1995).
[Crossref]

Taga, H.

M. Suzuki, I. Morita, N. Edagawa, S. Yamamoto, H. Taga, and S. Akiba, Electron. Lett. 31, 2027 (1995).
[Crossref]

Turitsyn, S. K.

I. Gabitov and S. K. Turitsyn, JETP Lett. 63, 863 (1996); Opt. Lett. 21, 327 (1996).
[Crossref]

Yamamoto, S.

M. Suzuki, I. Morita, N. Edagawa, S. Yamamoto, H. Taga, and S. Akiba, Electron. Lett. 31, 2027 (1995).
[Crossref]

Electron. Lett. (3)

N. J. Smith, F. M. Knox, N. J. Doran, K. J. Blow, and I. Bennion, Electron. Lett. 32, 54 (1996).
[Crossref]

M. Suzuki, I. Morita, N. Edagawa, S. Yamamoto, H. Taga, and S. Akiba, Electron. Lett. 31, 2027 (1995).
[Crossref]

M. Nakazawa and H. Kubota, Electron. Lett. 31, 216 (1995).
[Crossref]

JETP Lett. (1)

I. Gabitov and S. K. Turitsyn, JETP Lett. 63, 863 (1996); Opt. Lett. 21, 327 (1996).
[Crossref]

Opt. Lett. (2)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Chirp CZ versus pZ with ΔD=58, k1=47, k2=-47.94, and Zd=0.155.

Fig. 2
Fig. 2

Bound-state solution (dotted curve) of Eq.  (14), with 2A0/D0=7.156, K0/D0=-0.858, and 2λ0/D0=3.962; and the pulse shape (solid curve) at Z/Zd=199.25 obtained by numerical simulation of Eq.  (1).

Fig. 3
Fig. 3

Energy of the pulse within the window T<5 normalized by the input energy versus distance, with Zd=0.155 and Z1/Zd=0.5.

Fig. 4
Fig. 4

Energy of the pulse renormalized by the energy at Z/Zd=100 for each ΔD versus distance. Parameters are the same as for Fig.  3.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

iuZ+dZ22uT2+u2u=0,
dZ=d10<Z-nZd<Z1d2for Z1<Z-nZd<Zd.
uZ, T=wZ, Texpi2CZT2.
iwZ+dCTwT+d22wT2+w2w-1/2C˙+dC2T2w=-i2dCw.
τ=pZT, wZ, T=aZvZ, τ.
ivZ+dp222vτ2+a2v2v-κZ2τ2v=0,
a˙=-1/2Cad,
p˙=-Cpd,
κZC˙+C2dp2.
κp1Zd0ZdκZpZdZ=0,
κZ=k10<Z-nZd<Z1k2Z1<Z-nZd<Zd.
C2=2p2EZ-βZln p.
iVZ+D022Vτ2+A0V2V-K02τ2V=0,
D02d2fdτ2+A0f3-K02τ2f=λ0f.
Uτ=-A0f2τ+K0/2τ2.

Metrics