Abstract

We demonstrate experimentally the existence of cross-phase-modulation-induced modulational instability in the absence of group-velocity mismatch between the interacting nonlinear dispersive waves. The experiment is performed by means of a normally dispersive isotropic bimodal fiber. The group-velocity mismatch between the fundamental and the first-order modes that constitute the two interacting waves is controlled by wavelength tuning. A strong power dependence of the modulational instability spectra is observed near the condition of group-velocity matching.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1995).
  2. A. L. Berkhoer and V. E. Zakharov, Sov. Phys. JETP 31, 468 (1970) [Zh. Eskp. Teor. Fiz. 58, 903 (1970)].
  3. J. E. Rothenberg, Phys. Rev. A 42, 682 (1990).
    [Crossref] [PubMed]
  4. P. D. Drummond, T. A. B. Kennedy, J. M. Dudley, R. Leonhardt, and J. D. Harvey, Opt. Commun. 78, 137 (1990).
    [Crossref]
  5. R. H. Stolen, IEEE J. Quantum Electron. QE-11, 100 (1975).
    [Crossref]
  6. P. Tchofo Dinda, G. Millot, E. Seve, and M. Haelterman, Opt. Lett. 21, 1640 (1996).
    [Crossref] [PubMed]
  7. S. G. Murdoch, R. Leonhardt, and J. D. Harvey, Opt. Lett. 20, 866 (1995).
    [Crossref] [PubMed]
  8. D. Gloge, Appl. Opt. 10, 2252 (1971).
    [Crossref] [PubMed]

1996 (1)

1995 (1)

1990 (2)

J. E. Rothenberg, Phys. Rev. A 42, 682 (1990).
[Crossref] [PubMed]

P. D. Drummond, T. A. B. Kennedy, J. M. Dudley, R. Leonhardt, and J. D. Harvey, Opt. Commun. 78, 137 (1990).
[Crossref]

1975 (1)

R. H. Stolen, IEEE J. Quantum Electron. QE-11, 100 (1975).
[Crossref]

1971 (1)

1970 (1)

A. L. Berkhoer and V. E. Zakharov, Sov. Phys. JETP 31, 468 (1970) [Zh. Eskp. Teor. Fiz. 58, 903 (1970)].

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1995).

Berkhoer, A. L.

A. L. Berkhoer and V. E. Zakharov, Sov. Phys. JETP 31, 468 (1970) [Zh. Eskp. Teor. Fiz. 58, 903 (1970)].

Drummond, P. D.

P. D. Drummond, T. A. B. Kennedy, J. M. Dudley, R. Leonhardt, and J. D. Harvey, Opt. Commun. 78, 137 (1990).
[Crossref]

Dudley, J. M.

P. D. Drummond, T. A. B. Kennedy, J. M. Dudley, R. Leonhardt, and J. D. Harvey, Opt. Commun. 78, 137 (1990).
[Crossref]

Gloge, D.

Haelterman, M.

Harvey, J. D.

S. G. Murdoch, R. Leonhardt, and J. D. Harvey, Opt. Lett. 20, 866 (1995).
[Crossref] [PubMed]

P. D. Drummond, T. A. B. Kennedy, J. M. Dudley, R. Leonhardt, and J. D. Harvey, Opt. Commun. 78, 137 (1990).
[Crossref]

Kennedy, T. A. B.

P. D. Drummond, T. A. B. Kennedy, J. M. Dudley, R. Leonhardt, and J. D. Harvey, Opt. Commun. 78, 137 (1990).
[Crossref]

Leonhardt, R.

S. G. Murdoch, R. Leonhardt, and J. D. Harvey, Opt. Lett. 20, 866 (1995).
[Crossref] [PubMed]

P. D. Drummond, T. A. B. Kennedy, J. M. Dudley, R. Leonhardt, and J. D. Harvey, Opt. Commun. 78, 137 (1990).
[Crossref]

Millot, G.

Murdoch, S. G.

Rothenberg, J. E.

J. E. Rothenberg, Phys. Rev. A 42, 682 (1990).
[Crossref] [PubMed]

Seve, E.

Stolen, R. H.

R. H. Stolen, IEEE J. Quantum Electron. QE-11, 100 (1975).
[Crossref]

Tchofo Dinda, P.

Zakharov, V. E.

A. L. Berkhoer and V. E. Zakharov, Sov. Phys. JETP 31, 468 (1970) [Zh. Eskp. Teor. Fiz. 58, 903 (1970)].

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

R. H. Stolen, IEEE J. Quantum Electron. QE-11, 100 (1975).
[Crossref]

Opt. Commun. (1)

P. D. Drummond, T. A. B. Kennedy, J. M. Dudley, R. Leonhardt, and J. D. Harvey, Opt. Commun. 78, 137 (1990).
[Crossref]

Opt. Lett. (2)

Phys. Rev. A (1)

J. E. Rothenberg, Phys. Rev. A 42, 682 (1990).
[Crossref] [PubMed]

Sov. Phys. JETP (1)

A. L. Berkhoer and V. E. Zakharov, Sov. Phys. JETP 31, 468 (1970) [Zh. Eskp. Teor. Fiz. 58, 903 (1970)].

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Wavelength dependence of the CPM coefficients r0 and r1 corresponding to the LP01 and LP11 modes, respectively. (b) Group-velocity mismatch (GVM) δ versus pump wavelength λ.

Fig. 2
Fig. 2

Theoretical gain spectra at zero group-velocity mismatch λ=λc for identical powers in each mode. The three gain curves correspond to P0, 1=P/2=25, 75, 100  W.

Fig. 3
Fig. 3

Optimal modulation frequency Ωopt versus pump wavelength in the case of identical pump powers in each mode and P=150 W. Solid curve, values of Ωopt calculated from linear-stability analysis; ×'s, experimental measurements.

Fig. 4
Fig. 4

Optimal modulation frequency Ωopt versus total input power P for identical group velocities δ=0 and identical powers in each mode. The experimental results (×'s) can be compared with the results of the linear-stability analysis (solid curve). The inset shows the spectrum observed at critical wavelength λ=λc at P=287 W.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

zEj+βjtEj+i2βjtt2Ej-iγjEj2+2wjE1-j2Ej=0, j=0, 1,

Metrics