Abstract

A dynamic incoherent-to-coherent converter using the photorefractive fanning effect is demonstrated in a BaTiO 3:Ce crystal, and high-quality positive replicas of the incoherent image are obtained with a resolution of 32  line pairs/mm. In this method the incoherent image-bearing beam modulates the transmission intensity of the coherent beam directly, and no readout beam is required. When the intensity ratio of the incoherent beam to the coherent beam is smaller than 5, the transmission intensity of the coherent beam increases almost linearly with increased intensity of the incoherent beam.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. A. Kamshilin and M. P. Petrov, Sov. Tech. Phys. Lett. 6, 144 (1980).
  2. Y. Shi, D. Psaltis, A. Marrakchi, and A. R. Tanguay, Appl. Opt. 22, 3665 (1983).
    [CrossRef] [PubMed]
  3. E. Voit and P. Günter, Opt. Lett. 12, 769 (1987).
    [CrossRef] [PubMed]
  4. C.-C. Sun, M.-W. Chang, and K. Y. Hsu, Opt. Lett. 18, 655 (1993).
    [CrossRef]
  5. A. Marrakchi, Opt. Lett. 13, 654 (1988).
    [CrossRef]
  6. E. J. Sharp, G. L. Wood, W. W. Clark, G. J. Salamo, and R. R. Neurgaonkar, Opt. Lett. 17, 207 (1992).
    [CrossRef] [PubMed]
  7. J. Ma, L. Liu, S. Wu, Z. Wang, and L. Xu, Opt. Lett. 14, 572 (1989).
    [CrossRef] [PubMed]
  8. J. Feinberg, J. Opt. Soc. Am. 72, 46 (1982).
    [CrossRef]
  9. M. Segev, Y. Ophir, and B. Fischer, Opt. Commun. 77, 265 (1990).
    [CrossRef]
  10. M. Segev, D. Engin, A. Yariv, and G. C. Valley, Opt. Lett. 18, 956 (1993).
    [CrossRef] [PubMed]
  11. M. Cronin-Golomb, A. M. Biernacki, C. Lin, and H. Kong, Opt. Lett. 12, 1029 (1987).
    [CrossRef] [PubMed]
  12. W. S. Rabinovich, B. J. Feldman, and G. C. Gilbreath, Opt. Lett. 16, 1147 (1991).
    [CrossRef] [PubMed]
  13. S.-K. Kwong, M. Cronin-Golomb, and A. Yariv, Appl. Phys. Lett. 45, 1016 (1984).
    [CrossRef]
  14. Y. Fainman, E. Klacnik, and S. H. Lee, Opt. Eng. 25, 228 (1986).
    [CrossRef]

1993 (2)

1992 (1)

1991 (1)

1990 (1)

M. Segev, Y. Ophir, and B. Fischer, Opt. Commun. 77, 265 (1990).
[CrossRef]

1989 (1)

1988 (1)

1987 (2)

1986 (1)

Y. Fainman, E. Klacnik, and S. H. Lee, Opt. Eng. 25, 228 (1986).
[CrossRef]

1984 (1)

S.-K. Kwong, M. Cronin-Golomb, and A. Yariv, Appl. Phys. Lett. 45, 1016 (1984).
[CrossRef]

1983 (1)

1982 (1)

1980 (1)

A. A. Kamshilin and M. P. Petrov, Sov. Tech. Phys. Lett. 6, 144 (1980).

Biernacki, A. M.

Chang, M.-W.

Clark, W. W.

Cronin-Golomb, M.

M. Cronin-Golomb, A. M. Biernacki, C. Lin, and H. Kong, Opt. Lett. 12, 1029 (1987).
[CrossRef] [PubMed]

S.-K. Kwong, M. Cronin-Golomb, and A. Yariv, Appl. Phys. Lett. 45, 1016 (1984).
[CrossRef]

Engin, D.

Fainman, Y.

Y. Fainman, E. Klacnik, and S. H. Lee, Opt. Eng. 25, 228 (1986).
[CrossRef]

Feinberg, J.

Feldman, B. J.

Fischer, B.

M. Segev, Y. Ophir, and B. Fischer, Opt. Commun. 77, 265 (1990).
[CrossRef]

Gilbreath, G. C.

Günter, P.

Hsu, K. Y.

Kamshilin, A. A.

A. A. Kamshilin and M. P. Petrov, Sov. Tech. Phys. Lett. 6, 144 (1980).

Klacnik, E.

Y. Fainman, E. Klacnik, and S. H. Lee, Opt. Eng. 25, 228 (1986).
[CrossRef]

Kong, H.

Kwong, S.-K.

S.-K. Kwong, M. Cronin-Golomb, and A. Yariv, Appl. Phys. Lett. 45, 1016 (1984).
[CrossRef]

Lee, S. H.

Y. Fainman, E. Klacnik, and S. H. Lee, Opt. Eng. 25, 228 (1986).
[CrossRef]

Lin, C.

Liu, L.

Ma, J.

Marrakchi, A.

Neurgaonkar, R. R.

Ophir, Y.

M. Segev, Y. Ophir, and B. Fischer, Opt. Commun. 77, 265 (1990).
[CrossRef]

Petrov, M. P.

A. A. Kamshilin and M. P. Petrov, Sov. Tech. Phys. Lett. 6, 144 (1980).

Psaltis, D.

Rabinovich, W. S.

Salamo, G. J.

Segev, M.

Sharp, E. J.

Shi, Y.

Sun, C.-C.

Tanguay, A. R.

Valley, G. C.

Voit, E.

Wang, Z.

Wood, G. L.

Wu, S.

Xu, L.

Yariv, A.

M. Segev, D. Engin, A. Yariv, and G. C. Valley, Opt. Lett. 18, 956 (1993).
[CrossRef] [PubMed]

S.-K. Kwong, M. Cronin-Golomb, and A. Yariv, Appl. Phys. Lett. 45, 1016 (1984).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the experimental setup used to perform incoherent-to-coherent conversion by use of the photorefractive effect. RC, U.S. Air Force resolution chart; L1–L3, lenses with focal lengths of 400  mm; BS, beam splitter; M1, M2, mirrors; PBS, polarized beam splitter.

Fig. 2
Fig. 2

Transmission of the coherent beam versus its external incident angle α. The solid curve is a guide for the eye.

Fig. 3
Fig. 3

The 1/e decay time of the coherent beam versus its average intensity for α=30°.

Fig. 4
Fig. 4

Transmission of the coherent beam (squares) versus intensity ratio β of the incoherent beam to the coherent beam for α=30° and an average intensity of the coherent beam of 15 mW/cm2.

Fig. 5
Fig. 5

Photographs of the input and output images for different intensity ratios β. (a) Input image. The output images are for β values of (b) 1, (c) 2, (d) 4, and (e) 8. (f) Amplified 4 and 5 groups of (d).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Γeff=IcoIco+IincoΓ0,

Metrics