Abstract

Experiments are presented showing that under dual-frequency, orthogonal-polarization pumping, stimulated Raman scattering in optical birefringent fibers can be suppressed in one of the two fiber axes. For relatively small-frequency spacing and group-velocity mismatch between the pumps, Stokes light is suppressed along the polarization direction of the highest-frequency pump, owing to the orthogonal component of the Raman gain.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Stolen, Phys. Chem. Glasses 11, 83 (1970).
  2. D. J. Dougherty, F. X. Kärtner, H. A. Haus, and E. Ippen, Opt. Lett. 20, 31 (1995).
    [Crossref] [PubMed]
  3. R. Hellwarth, Prog. Quantum Electron. 5, 1 (1977).
    [Crossref]
  4. E. Golovchenko, E. M. Dianov, P. V. Mamyshev, and A. N. Pilipetskii, JETP Lett. 50, 190 (1989).
  5. E. Golovchenko and A. N. Pilipetskii, Sov. Lightwave Commun. 1, 271 (1991).
  6. P. V. Mamyshev and A. P. Vertikov, in Quantum Electronics and Laser Science, Vol. 13 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), p. 130.
  7. S. Trillo and S. Wabnitz, J. Opt. Soc. Am. B 9, 1061 (1992).
    [Crossref]
  8. E. Seve, P. Tchofo Dinda, G. Millot, M. Remoissenet, J. M. Bilbault, and M. Haelterman, Phys. Rev. A 54, 3519 (1996).
    [Crossref] [PubMed]
  9. K. S. Chiang, K. P. Lor, and Y. T. Chow, Opt. Lett. 22, 510 (1997).
    [Crossref] [PubMed]

1997 (1)

1996 (1)

E. Seve, P. Tchofo Dinda, G. Millot, M. Remoissenet, J. M. Bilbault, and M. Haelterman, Phys. Rev. A 54, 3519 (1996).
[Crossref] [PubMed]

1995 (1)

1992 (1)

1991 (1)

E. Golovchenko and A. N. Pilipetskii, Sov. Lightwave Commun. 1, 271 (1991).

1989 (1)

E. Golovchenko, E. M. Dianov, P. V. Mamyshev, and A. N. Pilipetskii, JETP Lett. 50, 190 (1989).

1977 (1)

R. Hellwarth, Prog. Quantum Electron. 5, 1 (1977).
[Crossref]

1970 (1)

R. H. Stolen, Phys. Chem. Glasses 11, 83 (1970).

Bilbault, J. M.

E. Seve, P. Tchofo Dinda, G. Millot, M. Remoissenet, J. M. Bilbault, and M. Haelterman, Phys. Rev. A 54, 3519 (1996).
[Crossref] [PubMed]

Chiang, K. S.

Chow, Y. T.

Dianov, E. M.

E. Golovchenko, E. M. Dianov, P. V. Mamyshev, and A. N. Pilipetskii, JETP Lett. 50, 190 (1989).

Dougherty, D. J.

Golovchenko, E.

E. Golovchenko and A. N. Pilipetskii, Sov. Lightwave Commun. 1, 271 (1991).

E. Golovchenko, E. M. Dianov, P. V. Mamyshev, and A. N. Pilipetskii, JETP Lett. 50, 190 (1989).

Haelterman, M.

E. Seve, P. Tchofo Dinda, G. Millot, M. Remoissenet, J. M. Bilbault, and M. Haelterman, Phys. Rev. A 54, 3519 (1996).
[Crossref] [PubMed]

Haus, H. A.

Hellwarth, R.

R. Hellwarth, Prog. Quantum Electron. 5, 1 (1977).
[Crossref]

Ippen, E.

Kärtner, F. X.

Lor, K. P.

Mamyshev, P. V.

E. Golovchenko, E. M. Dianov, P. V. Mamyshev, and A. N. Pilipetskii, JETP Lett. 50, 190 (1989).

P. V. Mamyshev and A. P. Vertikov, in Quantum Electronics and Laser Science, Vol. 13 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), p. 130.

Millot, G.

E. Seve, P. Tchofo Dinda, G. Millot, M. Remoissenet, J. M. Bilbault, and M. Haelterman, Phys. Rev. A 54, 3519 (1996).
[Crossref] [PubMed]

Pilipetskii, A. N.

E. Golovchenko and A. N. Pilipetskii, Sov. Lightwave Commun. 1, 271 (1991).

E. Golovchenko, E. M. Dianov, P. V. Mamyshev, and A. N. Pilipetskii, JETP Lett. 50, 190 (1989).

Remoissenet, M.

E. Seve, P. Tchofo Dinda, G. Millot, M. Remoissenet, J. M. Bilbault, and M. Haelterman, Phys. Rev. A 54, 3519 (1996).
[Crossref] [PubMed]

Seve, E.

E. Seve, P. Tchofo Dinda, G. Millot, M. Remoissenet, J. M. Bilbault, and M. Haelterman, Phys. Rev. A 54, 3519 (1996).
[Crossref] [PubMed]

Stolen, R. H.

R. H. Stolen, Phys. Chem. Glasses 11, 83 (1970).

Tchofo Dinda, P.

E. Seve, P. Tchofo Dinda, G. Millot, M. Remoissenet, J. M. Bilbault, and M. Haelterman, Phys. Rev. A 54, 3519 (1996).
[Crossref] [PubMed]

Trillo, S.

Vertikov, A. P.

P. V. Mamyshev and A. P. Vertikov, in Quantum Electronics and Laser Science, Vol. 13 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), p. 130.

Wabnitz, S.

J. Opt. Soc. Am. B (1)

JETP Lett. (1)

E. Golovchenko, E. M. Dianov, P. V. Mamyshev, and A. N. Pilipetskii, JETP Lett. 50, 190 (1989).

Opt. Lett. (2)

Phys. Chem. Glasses (1)

R. H. Stolen, Phys. Chem. Glasses 11, 83 (1970).

Phys. Rev. A (1)

E. Seve, P. Tchofo Dinda, G. Millot, M. Remoissenet, J. M. Bilbault, and M. Haelterman, Phys. Rev. A 54, 3519 (1996).
[Crossref] [PubMed]

Prog. Quantum Electron. (1)

R. Hellwarth, Prog. Quantum Electron. 5, 1 (1977).
[Crossref]

Sov. Lightwave Commun. (1)

E. Golovchenko and A. N. Pilipetskii, Sov. Lightwave Commun. 1, 271 (1991).

Other (1)

P. V. Mamyshev and A. P. Vertikov, in Quantum Electronics and Laser Science, Vol. 13 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), p. 130.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Solid curves, theoretical variation of pump and Stokes powers versus fiber length; dots, analytical solution for the energy cross transfer between pumps. δ=0.

Fig. 2
Fig. 2

Experimental output spectra with (a) single- and (b) dual-frequency pumps (the pump lines are divided by a common factor). δ=0.

Fig. 3
Fig. 3

Experimental output spectra measured in operating conditions of nonzero GVM: (a) δ=0.61 ps/m and (b) δ=-0.61 ps/m.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

Ejz, t=12UPjzexpikPjz-ωPjt+USjzexpikSjz-ωSjt+ c.c., j=1, 2,
Pi3t=σijklEjtEktElt+Ejt-tdt1σijklRt-t1Ekt1Elt1.
σijklRω=Aωδijδkl+Bω2δikδjl+δilδjk.
UPjz-i-1jδ2ωPj+βPj2ωPj2UPj=iγPjHPjPjPjUPj2+HP3-jP3-jPjUP3-j2+HSjSjPjUSj2+HS3-jS3-jPjUS3-j2UPj, j=1, 2,
USjz-i-1jδ2ωSj+βSj2ωSj2USj=iγSjHSjSjSjUSj2+HS3-jS3-jSjUS3-j2+HPjPjSjUPj2+HP3-jP3-jSjUP3-j2USj, j=1, 2,
HPjPjPj=HSjSjSjχ1111R0+3σ4,
HSjSjPjχ1111R-Ω+χ1111R0+3σ2,
HP3-jP3-jPj=HS3-jS3-jSjχ1212R-1jΔω+A02+σ2,
HS3-jS3-jPjA02+χ1212R-1jΔω-Ω+σ2,
HPjPjSjχ1111RΩ+χ1111R0+3σ2,
HP3-jP3-jSjA02+χ1212R-1jΔω+Ω+σ2,
χ1111RωAω+Bω/2, χ1212RωBω/4,
P2zUP22=P20R0+γγ+R0exp-2γP2 Imχ1212R-ΔωzP20R0+γ,
P1zUP12=P10+γP20-P2z, R0P10P20 γγP1γP2,

Metrics