Abstract

A novel method for characterization of optical fiber resonators by an optical time-domain reflectometry (OTDR) technique is reported. This easy-to-use technique yields accurate results for cavity lengths ranging from a few meters to several kilometers. A simple relationship is established between the round-trip cavity loss and the position where the OTDR signal is maximum. The value obtained for the round-trip cavity loss turns out to be quite insensitive to uncertainties in the determination of the OTDR maximum position.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Takiguchi and K. Hotate, IEEE Photon. Technol. Lett. 4, 7 (1992).
  2. F. Zarinetchi, S. P. Smith, and S. Ezekiel, Opt. Lett. 16, 6 (1991).
    [CrossRef]
  3. L. Thevenaz, J. Boschung, and P.-A. Robert, Electron. Lett. 30, 18 (1994).
    [CrossRef]
  4. K. Kalli and D. A. Jackson, Opt. Lett. 17, 17 (1992).
  5. Y. Ohtsuka and Y. Imai, Appl. Opt. 24, 4199 (1985).
    [CrossRef]
  6. L. F. Stokes, M. Chodorow, and H. J. Shaw, Opt. Lett. 7, 6 (1982).
  7. F. Zhang and J. W. Y. Lit, J. Opt. Soc. Am. A 5, 8 (1988).
  8. D. J. Ives, R. L. Palmer, and B. Walker, Electron. Lett. 27, 4 (1991).
    [CrossRef]
  9. P. Gysel and R. K. Staubli, J. Lightwave Technol. 8, 4 (1990).

1994 (1)

L. Thevenaz, J. Boschung, and P.-A. Robert, Electron. Lett. 30, 18 (1994).
[CrossRef]

1992 (2)

K. Kalli and D. A. Jackson, Opt. Lett. 17, 17 (1992).

K. Takiguchi and K. Hotate, IEEE Photon. Technol. Lett. 4, 7 (1992).

1991 (2)

F. Zarinetchi, S. P. Smith, and S. Ezekiel, Opt. Lett. 16, 6 (1991).
[CrossRef]

D. J. Ives, R. L. Palmer, and B. Walker, Electron. Lett. 27, 4 (1991).
[CrossRef]

1990 (1)

P. Gysel and R. K. Staubli, J. Lightwave Technol. 8, 4 (1990).

1988 (1)

F. Zhang and J. W. Y. Lit, J. Opt. Soc. Am. A 5, 8 (1988).

1985 (1)

1982 (1)

L. F. Stokes, M. Chodorow, and H. J. Shaw, Opt. Lett. 7, 6 (1982).

Boschung, J.

L. Thevenaz, J. Boschung, and P.-A. Robert, Electron. Lett. 30, 18 (1994).
[CrossRef]

Chodorow, M.

L. F. Stokes, M. Chodorow, and H. J. Shaw, Opt. Lett. 7, 6 (1982).

Ezekiel, S.

F. Zarinetchi, S. P. Smith, and S. Ezekiel, Opt. Lett. 16, 6 (1991).
[CrossRef]

Gysel, P.

P. Gysel and R. K. Staubli, J. Lightwave Technol. 8, 4 (1990).

Hotate, K.

K. Takiguchi and K. Hotate, IEEE Photon. Technol. Lett. 4, 7 (1992).

Imai, Y.

Ives, D. J.

D. J. Ives, R. L. Palmer, and B. Walker, Electron. Lett. 27, 4 (1991).
[CrossRef]

Jackson, D. A.

K. Kalli and D. A. Jackson, Opt. Lett. 17, 17 (1992).

Kalli, K.

K. Kalli and D. A. Jackson, Opt. Lett. 17, 17 (1992).

Lit, J. W. Y.

F. Zhang and J. W. Y. Lit, J. Opt. Soc. Am. A 5, 8 (1988).

Ohtsuka, Y.

Palmer, R. L.

D. J. Ives, R. L. Palmer, and B. Walker, Electron. Lett. 27, 4 (1991).
[CrossRef]

Robert, P.-A.

L. Thevenaz, J. Boschung, and P.-A. Robert, Electron. Lett. 30, 18 (1994).
[CrossRef]

Shaw, H. J.

L. F. Stokes, M. Chodorow, and H. J. Shaw, Opt. Lett. 7, 6 (1982).

Smith, S. P.

F. Zarinetchi, S. P. Smith, and S. Ezekiel, Opt. Lett. 16, 6 (1991).
[CrossRef]

Staubli, R. K.

P. Gysel and R. K. Staubli, J. Lightwave Technol. 8, 4 (1990).

Stokes, L. F.

L. F. Stokes, M. Chodorow, and H. J. Shaw, Opt. Lett. 7, 6 (1982).

Takiguchi, K.

K. Takiguchi and K. Hotate, IEEE Photon. Technol. Lett. 4, 7 (1992).

Thevenaz, L.

L. Thevenaz, J. Boschung, and P.-A. Robert, Electron. Lett. 30, 18 (1994).
[CrossRef]

Walker, B.

D. J. Ives, R. L. Palmer, and B. Walker, Electron. Lett. 27, 4 (1991).
[CrossRef]

Zarinetchi, F.

F. Zarinetchi, S. P. Smith, and S. Ezekiel, Opt. Lett. 16, 6 (1991).
[CrossRef]

Zhang, F.

F. Zhang and J. W. Y. Lit, J. Opt. Soc. Am. A 5, 8 (1988).

Appl. Opt. (1)

Electron. Lett. (2)

D. J. Ives, R. L. Palmer, and B. Walker, Electron. Lett. 27, 4 (1991).
[CrossRef]

L. Thevenaz, J. Boschung, and P.-A. Robert, Electron. Lett. 30, 18 (1994).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K. Takiguchi and K. Hotate, IEEE Photon. Technol. Lett. 4, 7 (1992).

J. Lightwave Technol. (1)

P. Gysel and R. K. Staubli, J. Lightwave Technol. 8, 4 (1990).

J. Opt. Soc. Am. A (1)

F. Zhang and J. W. Y. Lit, J. Opt. Soc. Am. A 5, 8 (1988).

Opt. Lett. (3)

L. F. Stokes, M. Chodorow, and H. J. Shaw, Opt. Lett. 7, 6 (1982).

F. Zarinetchi, S. P. Smith, and S. Ezekiel, Opt. Lett. 16, 6 (1991).
[CrossRef]

K. Kalli and D. A. Jackson, Opt. Lett. 17, 17 (1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

OTDR trace of a 765-m-long fiber ring resonator with coupler coefficient k=95% together with the numerical fit of Eq. (4) below, giving a calculated cavity feedback coefficient kr=89.5%.

Fig. 2
Fig. 2

Schematic description of the measurement technique. The optical paths corresponding to the Jones matrices My and Ty are represented.

Fig. 3
Fig. 3

Addition of the three contributions of Step 1. The contributions scattered at the same point are added coherently.

Fig. 4
Fig. 4

OTDR trace of a 5.568-m-long fiber ring resonator with coupler coefficient k=94.8% together with the numerical fit of Eq. (7), giving a calculated cavity feedback coefficient kr=97.2%.

Tables (1)

Tables Icon

Table 1 OTDR Measurements of Several Fiber Ring Resonators of Increasing Length Compared with Measurements with a Coherent Light Sourcea

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Enmy=E00ykξn+m/2exp-αn+mL/2×expiβn+mLTyTMyTmMynTyeˆ,
E00y=IinRyξexp-αyexpi2βy,
My=cos θy expiφy/2sin θy expiφy/2-sin θy exp-iφy/2cos θy exp-iφy/2,
Iuy=I0ykξu-1exp-αuL×kξp=0uMyTu-pMypeˆ2+p=0u-1My+L/2Tu-p-1My+L/2peˆ2,
p=0uMyTu-pMypeˆ2=λθy,φy,u,
λθy,φy,uFθy,φyλ0,0,u=Fθy,φyu+12,
Iu=IinRuξ2 exp-αLu+12×kξu-1kξu+12+u2,
u=z/L-1/2.
kkr=exp-2Lzmax.

Metrics