Abstract

The influence of femtosecond near-infrared (NIR) microirradiation on cell vitality and cellular reproduction has been studied. Chinese hamster ovary cells exposed to a highly focused 150-fs scanning beam at 730, 760, and 800 nm (80 MHz, 80-µs pixel dwell time) of ≤1 mW remained unaffected by the femtosecond microbeam. However, increased mean power led to impaired cell division. At ≥6-mW mean power, cells were unable to form clones. They died or became giant cells. Complete cell destruction, including cell fragmentation, occurred at mean powers >10 mW.  Cell death was accompanied by intense luminescence in the mitochondrial region. When we consider the diffraction-limited spot size in the submicrometer region, intensities and photon flux densities of 0.8-kW pulses (10-mW mean power) are of the order of terawatts per square centimeter (1012 W/cm2) and 1032 photons cm-2 s-1, respectively. Extremely high fields may induce destructive intracellular plasma formation. The power limitations should be considered during NIR femtosecond microscopy of vital cells and in the design of compact NIR femtosecond solid-state lasers for two-photon microscopes.

© 1997 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription