Abstract

We report significant performance improvement of a mode-locked fiber laser gyroscope. A Fabry–Perot cavity GaAlAs laser diode whose front facet was antireflection coated was used as a gain medium. The rms noise equivalent rotation rate measured with a time-interval counter was improved to 0.06 deg/h. The long-term drift of the gyroscope signal was reduced to 100 deg/h after a polarizer was inserted into the laser cavity formed with a polarization-maintaining fiber.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. H. Park, H. S. Cho, D. H. Jang, B. W. Lee, and B. Y. Kim, Opt. Lett. 21, 92 (1996).
    [CrossRef] [PubMed]
  2. J. Chesnoy, Opt. Lett. 14, 990 (1989).
    [CrossRef] [PubMed]
  3. H. J. Jeong, Y. W. Koh, B. W. Lee, M. Y. Jeon, and B. Y. Kim, Appl. Opt. 35, 2206 (1996).
    [CrossRef] [PubMed]
  4. M. J. Jeon, H. J. Jeong, and B. Y. Kim, Opt. Lett. 18, 320 (1993).
    [CrossRef]
  5. J. Sigg, J. Quantum Electron. QE-29, 1262 (1993).
    [CrossRef]
  6. R. Ulrich, in Optical Fiber Rotation Sensing, W. K. Burns, ed. (Academic, San Diego, Calif., 1994), Chap. 2, p. 31.
  7. C. H. Henry and R. F. Kazarinov, IEEE. J. Quantum Electron. 22, 294 (1986).
    [CrossRef]

1996 (2)

1993 (2)

1989 (1)

1986 (1)

C. H. Henry and R. F. Kazarinov, IEEE. J. Quantum Electron. 22, 294 (1986).
[CrossRef]

Chesnoy, J.

Cho, H. S.

Henry, C. H.

C. H. Henry and R. F. Kazarinov, IEEE. J. Quantum Electron. 22, 294 (1986).
[CrossRef]

Jang, D. H.

Jeon, M. J.

Jeon, M. Y.

Jeong, H. J.

Kazarinov, R. F.

C. H. Henry and R. F. Kazarinov, IEEE. J. Quantum Electron. 22, 294 (1986).
[CrossRef]

Kim, B. Y.

Koh, Y. W.

Lee, B. W.

Park, K. H.

Sigg, J.

J. Sigg, J. Quantum Electron. QE-29, 1262 (1993).
[CrossRef]

Ulrich, R.

R. Ulrich, in Optical Fiber Rotation Sensing, W. K. Burns, ed. (Academic, San Diego, Calif., 1994), Chap. 2, p. 31.

Appl. Opt. (1)

IEEE. J. Quantum Electron. (1)

C. H. Henry and R. F. Kazarinov, IEEE. J. Quantum Electron. 22, 294 (1986).
[CrossRef]

J. Quantum Electron. (1)

J. Sigg, J. Quantum Electron. QE-29, 1262 (1993).
[CrossRef]

Opt. Lett. (3)

Other (1)

R. Ulrich, in Optical Fiber Rotation Sensing, W. K. Burns, ed. (Academic, San Diego, Calif., 1994), Chap. 2, p. 31.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of a MLFLG: LD, antireflection-coated laser diode; POL, polarizer; APD, avalanche photodiode; DC’s, directional couplers; PM, phase modulator; PMF’s, polarization-maintaining fibers; TIA, time-interval analyzer; HR, highly reflecting; AR, antireflection.

Fig. 2
Fig. 2

Output waveforms of the mode-locked pulses at a tapping coupler from (a) port 1 and (b) port 2. GND’s, electrical ground levels.

Fig. 3
Fig. 3

Mode-locked pulse trains from the MLFLG (lower traces) with (a) no rotation-rate input and (b) a rotation-rate input of 55 deg/s. Upper traces are modulation signals applied to the phase modulator.

Fig. 4
Fig. 4

Noise and bias drift of the gyroscope output with integration times shown when the Sagnac loop was at rest. The horizontal lines correspond to Tm/2.

Fig. 5
Fig. 5

Real-time measurement of pulse intervals with a sinusoidal phase-difference input at 12.88 kHz.

Metrics