Abstract

Fluorescence intensity depends strongly on the distance between the emitting molecule and a metallic interface. We show that a scanning near-field optical microscope (SNOM) is a simple and versatile tool for studying such an effect. The fluorescent molecules are embedded in a layer upon a silica substrate, and metal is coated on the SNOM tip. We present variations of fluorescence intensity versus tip–sample distance from 800 to 80 nm. A simple model is used to explain the experimental results. The proposed setup could be used to study nonradiative transfer at a nanometric scale. It could also yield to a new type of optical near-field profiler that uses fluorescent signal.

© 1997 Optical Society of America

Full Article  |  PDF Article
Related Articles
Fluorescence lifetime of a molecule near a corrugated interface: application to near-field microscopy

Gilles Parent, Daniel Van Labeke, and Dominique Barchiesi
J. Opt. Soc. Am. A 16(4) 896-908 (1999)

Reflection-mode scanning near-field optical microscopy using an apertureless metallic tip

R. Bachelot, P. Gleyzes, and A. C. Boccara
Appl. Opt. 36(10) 2160-2170 (1997)

Fluorescence near metal tips: The roles of energy transfer and surface plasmon polaritons

Nader A. Issa and Reinhard Guckenberger
Opt. Express 15(19) 12131-12144 (2007)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription